Sommario

Introduzione	5
CAPITOLO 1. Reti wireless	8
1.1. Le tecnologie wireless	8
1.1.1. Classificazione delle reti wireless	9
1.1.2. Lo standard IEEE 802.11	10
1.2. Architetture di rete	11
1.3. Mobile ad-hoc network	12
1.4. Vehicular ad-hoc network	14
1.4.1. Comunicazione tra veicoli e veicolo-infrastruttura	15
1.4.2. Principali differenze tra MANET e VANET	16
1.5. Altre tipologie di rete	17
1.5.1. LTE	17
1.5.2. WiMAX	18
1.5.3. Bluetooth	19
1.5.4. Reti wireless underwater/interplanetary	21
CAPITOLO 2. Il protocollo WAVE/802.11p	23
2.1. Architettura WAVE	23
2.1.1. Componenti di un sistema WAVE	23
2.1.2. Protocollo di comunicazione	24
2.2. Lo standard 802.11p	25
2.2.1. Il livello fisico	26
2.2.2. Il livello MAC	27
2.3. Il livello Multichannel Operation	29
2.3.1. Utilizzo del canale	29

2.3.2. Quality of Service	31
2.4. Servizi di rete	33
2.4.1. Servizi di Data-Plane	33
2.4.2. Servizi di Management-Plane	34
2.5. WAVE Short Message Protocol	35
2.5.1. Formato del frame WSA	35
2.5.2. Formato del frame WSM	38
2.6. Il livello Resource Manager	39
2.7. Il livello Security Service	40
2.7.1. Concetti chiave per la sicurezza	40
2.7.2. Crittografia simmetrica	42
2.7.3. Crittografia asimmetrica	42
2.7.4. Firma digitale e funzione hash	44
CAPITOLO 3. Applicazioni per la sicurezza stradale	46
3.1. Global Positioning System	46
3.1.1. Determinazione della posizione	47
3.1.2. Assisted GPS	48
3.2. Navigazione satellitare	49
3.2.1. Traffic Message Channel	50
3.2.2. High Definition Traffic	51
3.2.3. L'applicazione Waze	52
3.3. Rilevazione di veicoli sulla strada	54
3.3.1. Rilevazione tramite sensori ottici	54
3.3.2. Generazione delle ipotesi	55
3.3.3. Verifica delle ipotesi	56

3.3.4. L'applicazione iOnRoad	57
3.4. Rilevazione di incidenti	58
3.4.1. Rilevazione tramite smartphone	58
3.4.2. Rilevazione tramite interfaccia OBD-II	59
3.4.3. Il sistema Allie	62
3.4.4. eCall	63
3.5. Possibili sviluppi con l'ausilio del protocollo WAVE	64
CAPITOLO 4. Proposta di un'applicazione per la sicurezza stradale	65
4.1. Obiettivi dell'applicazione	65
4.2. Tipologie di messaggi	66
4.2.1. Cooperative Awareness Message	66
4.2.2. Decentralized Environmental Notification Message	67
4.3. Comunicazioni successive all'incidente	68
4.3.1. Segnalazione ai veicoli	69
4.3.2. Comunicazione con il server	69
4.3.3. Intervento dei mezzi di emergenza	70
4.4. Scelta dinamica del percorso	71
4.4.1. Pianificazione del percorso ottimale	71
4.4.2. Aggiornamento dei tempi medi di percorrenza	73
4.4.3. Funzionamento dell'algoritmo	74
4.5. Requisiti	77
4.5.1. Installazione delle RSU	77
4.5.2. Gestione della richiesta da parte dei servizi di emergenza	78
4.5.3. Tasso di penetrazione	78
CAPITOLO 5. Simulazione e risultati	80

5.1. Framework di simulazione	30
5.1.1. V2X Simulation Runtime Infrastructure	31
5.1.2. Simulation of Urban MObility	34
5.1.3. JiST/SWANS	36
5.2. Implementazione dell'applicazione	38
5.3. Simulazioni	38
5.3.1. Parametri della simulazione	38
5.3.2. Scenari di simulazione	90
5.4. Risultati 9	92
5.4.1. Distanza dal luogo dell'incidente	93
5.4.2. Velocità media del mezzo di emergenza)4
5.4.3. Messaggi inviati e ricevuti	14
5.4.4. Confronto tra zone centrali e periferiche	17
5.4.5. Incidenza della densità di RSU	20
5.4.6. Tempo di viaggio del mezzo di emergenza	23
Conclusioni	26
Ringraziamenti12	27
Bibliografia	29

Introduzione

L'obiettivo di questo elaborato è quello di proporre un'applicazione per reti VANET che consenta una migliore gestione delle situazioni di emergenza e pericolo. Questa applicazione si basa sull'utilizzo del protocollo WAVE, acronimo di Wireless Access in Vehicular Environment, che consente lo scambio di messaggi tra i veicoli tramite tecnologia wireless.

Nel corso di questo lavoro di tesi, verrà fornita una descrizione riguardante le reti wireless, fornendo una descrizione delle loro caratteristiche e le tecnologie che utilizzano. Per i diversi ambiti in cui esse trovano applicazione, verranno trattate le tecnologie attualmente disponibili, soffermandosi in particolare sulle reti ad-hoc mobili e sulle reti veicolari, le quali utilizzano molti concetti derivanti dalle prime. Ci si soffermerà in particolare su quali siano le principali differenze tra le reti MANET e VANET poiché, nonostante i molteplici punti in comune, il maggiore grado di mobilità presente nelle reti veicolari implica delle differenze sostanziali nella tecnologia necessaria alla comunicazione in queste due tipologie. Oltre alle velocità dei nodi, varia il modello di mobilità, poiché i veicoli non possono seguire dei percorsi scelti arbitrariamente, ma devono necessariamente seguire la rete stradale. Lo standard si cui si basa la comunicazione nelle reti VANET è 802.11p, che fornisce il livello fisico e il controllo di accesso al mezzo. Il protocollo WAVE utilizza questo standard, implementando nei livelli superiori altri protocolli definiti dagli standard della famiglia IEEE P1609. Tali standard definiscono i servizi di sicurezza, la gestione delle risorse, le operazioni multicanale e il protocollo di scambio dei messaggi in WAVE. Le specifiche saranno illustrate dettagliatamente, analizzandone lo stack protocollare e il modo in cui i vari livelli comunicano. Sarà inoltre descritto il formato dei frame che il protocollo mette a disposizione per le sue varie funzionalità.

Per sottolineare le nuove opportunità concesse dall'applicazione proposta nel corso di questo elaborato, verranno illustrate quali sono le applicazioni attualmente in commercio che consentono la gestione di alcuni aspetti legati alla ricezione delle informazioni sul traffico, e per quanto riguarda la segnalazione di situazioni di pericolo ed emergenza. Nel primo caso, le applicazioni si basano sull'utilizzo del

GPS, perciò verrà descritto il suo funzionamento e la tecnologia con la quale fornisce informazioni relative alla posizione. Si illustrerà inoltre l'infrastruttura utilizzata da questo sistema. Si mostrerà come le applicazioni per la ricezione delle informazioni sul traffico si basano perlopiù sulle segnalazioni degli utenti e sulla raccolta di dati inerenti al traffico da fonti istituzionali. Le applicazioni esistenti che consentono la prevenzione e la segnalazione di incidenti, utilizzano un riscontro visivo o il collegamento con la centralina del veicolo per svolgere queste funzioni. Si illustreranno i motivi per i quali queste applicazioni apportano dei vantaggi limitati ai veicoli che si trovano nella zona vicina al luogo in cui si verifica l'incidente, e come sia possibile ottenere dei vantaggi maggiori con l'utilizzo dell'applicazione che verrà proposta.

Quest'ultima verrà descritta nel dettaglio, mostrando i messaggi che vengono scambiati nella rete VANET per la normale gestione del traffico e, in particolar modo, per la segnalazione delle situazioni di pericolo ed emergenza. Verranno descritti quali saranno i dispositivi necessari al funzionamento della rete VANET da installare nei veicoli, e l'infrastruttura di cui si avrà bisogno lungo la rete stradale. Si procederà alla spiegazione dettagliata dei meccanismi necessari per la segnalazione del pericolo per quanto riguarda la comunicazione ai veicoli presenti sulla rete stradale, e per la segnalazione dell'emergenza ai mezzi di soccorso, in modo che possano intervenire tempestivamente. Verrà inoltre descritto l'algoritmo utilizzato per il calcolo dei percorsi più rapidi in maniera dinamica rispetto allo sviluppo del traffico nella rete stradale, cosicché sia possibile ridurre al minimo la congestione del traffico. Quest'ultima caratteristica sarà sfruttata anche dai mezzi di soccorso, che potranno così intervenire evitando di trovarsi in situazioni di traffico congestionato, il che potrebbe accadere senza l'ausilio di questa applicazione. I vantaggi che l'utilizzo dell'applicazione oggetto della proposta potrà apportare sono molteplici, e vanno dalla comunicazione in tempo reale ai veicoli che si trovano nei pressi dell'incidente, alla riduzione dei tempi di intervento dei mezzi di emergenza, che potranno trarre vantaggio dalla segnalazione immediata dell'avvenimento, e dal calcolo del percorso più rapido grazie alla comunicazione V2X.

Infine, le prestazioni dell'applicazione verranno valutate tramite diverse simulazioni svolte in scenari differenti, in modo da fornire dati generali, che non dipendono dal

particolare scenario in cui l'applicazione è stata simulata. Le reti stradali su cui verranno effettuate le simulazioni corrisponderanno a dei luoghi reali, in modo da ricevere in output dati sufficientemente vicini a quelli ottenibili in un contesto reale. Saranno valutati principalmente i vantaggi che l'utilizzo dell'applicazione comporta relativamente al tempo di intervento necessario al veicolo di soccorso per raggiungere il luogo dell'incidente. Inoltre verrà valutata la distanza dal punto in cui si è verificata l'emergenza che il mezzo di soccorso può raggiungere, poiché con la presenza di veicoli in coda, non è sempre possibile recarsi esattamente nel luogo dell'incidente, ma il mezzo verrà fermato ad una certa distanza. Il confronto verrà effettuato tra i dati ottenuti variando il numero di veicoli presenti sulla rete stradale, e in assenza e in presenza di rete VANET. Per quanto riguarda quest'ultima opzione, verranno simulati differenti percentuali di veicoli forniti dell'applicazione, in modo da avere un'idea di quale possa essere il tasso di penetrazione minimo della tecnologia con il quale è possibile ottenere dei miglioramenti.

Alla fine di questo elaborato, saranno effettuate le considerazioni derivanti dal lavoro di analisi effettuato tramite i dati raccolti dalle simulazioni, e verranno proposte varie possibilità sul come sviluppare in futuro questa proposta.