
Abstract—In last years there has been a lot of research and 
development in wireless communications and mobility 
management, with the main purpose of connections handling 
between mobile hosts and base stations or access points, when 
different coverage areas are visited. This paper presents a novel 
2D reservation scheme for WLANs; a general prediction 
technique based both on the analysis of Cell Stay Time (CST) and 
on the direction probabilities of hand-in and hand-out events of 
mobile nodes from wireless cells is outlined. In particular, a 
threshold-based algorithm is presented, trying to take into 
account the mobility behavior of mobile users, through the 
analysis of a Hand-off Directional Probabilities (HDP) matrix. 
Users’ mobility has been analyzed, in order to reduce passive 
resource reservations, with a high gain in system utilization. In 
particular, an integrated architecture able to make active and 
passive reservations has been employed as a possible application 
of the proposed approach. The performances of the 2D wireless 
system have been evaluated in terms of prediction error and 
system utilization; in addition, some comparisons with older 
prediction schemes have been made. 

Index Terms—MRSVP, WLAN, MIP, Smooth Random 
Mobility Model, Predictive Reservation 

I. INTRODUCTION 
This work is based on a wirelessLAN 802.11 scenario, 

where MIP users [1,5,8] make service requests to the access 
points, requiring some QoS guarantees, like low delay-jitter or 
low call dropping probability during hand-off events; the only 
way for avoiding service degradations or disruptions during a 
mobile session is to make in-advance reservations (i.e. passive 
reservations) [1,5], having some informations about users’ 
mobility behaviour [2,3,8]. 

The choice of an appropriate mobility model plays an 
important role in bandwidth assignments; many works in 
literature face this problem, but most of them are based on 
some simplifications about users’ behaviour and do not lead to 
any analytical expression. The mobility model has a heavy 
impact on the obtained results and they can be unrealistic if 
the model is not appropriate. We employed the Smooth 
Random Mobility Model (SRMM) proposed in [4] for a two-
dimensional set of cell clusters; this model makes users’ 
movements smoother and more realistic than previous random 
models, because it relates speed and direction changes; in 
addition it leads to a general set of analytical expressions, that 

can be used for different wireless environments (urban, rural, 
etc.). 

In [12] a prediction technique based on cell stay time 
(CST) evaluation of a mobile user under a Random Way Point 
mobility model is proposed. In this work a formula that bind 
speed, cell radius and variation around the average speed is 
calculated. However no more realistic two dimensional (2D) 
mobility model has been considered and just the CST has been 
evaluated. This approach is not suitable for a 2D WLAN 
environment. On the basis of the previous work weakness, a 
novel technique of general application has been proposed and 
and it does not depend on the specific mobility model; it is 
based on the knowledge of two important statistics: the CST 
distribution and the Hand-off Directions Probabilities values 
(HDP); in [8] it is shown that the CST random variable, under 
the SRMM, follows a Gaussian trend, with a mean and a 
variance that depend on the input mobility parameters, strictly 
related to users’ behaviour. In addition to the CST statistic, 
HDP values are necessary in order to consider future positions 
of mobile hosts. Until now, in the literature [2,3,11], no heavy 
contribution is given to the multi-step mobility prediction in 
wireless cellular environments. In this paper, combining CST 
and HDP informations, a multi-step and threshold-based 
prediction algorithm is proposed for a two-dimensional 
environment: it uses CST and HDP values to dynamically 
select the future cells where to reserve passive bandwidth; it is 
shown that the obtained results are better than those of the 
previously proposed reservation schemes, based on a static 
reservation policy, such as presented in [13]. The threshold-
based algorithm is more performing because it is able to better 
adapt itself to dynamic mobile hosts’ movements. 

This paper is organized as follows: section II gives a brief 
overview of the Mobile RSVP protocol (applied in our work 
to make passive reservations) and the SRMM, used as a 
reference for hosts’ movements; the threshold-based algorithm 
is presented in section III; simulation results and conclusions 
are respectively summarized in sections IV and V. 

II. MRSVP AND SRMM
In order to handle users’ mobility and to offer guaranteed 

services (independent from mobility) the ReSerVation 
Protocol has been extended with the MRSVP [1]; in this way, 
hand-off events can be managed in an adequate manner and 
mobile users can make reservation requests over more than 
one cell, by their proxy agents: there are local proxy agents 
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(for active reservations handling) and remote proxy agents 
(which deal with passive reservations). An active reservation 
is made by a user only on the current access point (for 
Mobility Dependent Predictive class, as we see later), while 
passive reservations are made only on the remote cells that the 
user will visit during its connection (only users belonging to 
Mobility Independent Predictive class requests passive 
reservations). A MRSVP connection starts with a proxy-
discovery protocol phase, with which the user can become 
aware of the addresses of its remote agents; then a resource 
request can be made, which will reach the net sender, in order 
to begin data-packets transmission. After the proxy addresses 
are discovered, users send active_RESV messages to their 
local access points and passive_RESV messages to their 
remote access points, so the system must effect an admission 
control, in order to accept or refuse users’ requests. When a 
user moves from a coverage area to another one, the hand-off 
event is managed by making a new request (MDP class) or by 
a reservation switch (MIP class): the reserved resources in the 
old access point are released in both cases and, if the user 
belongs to MIP class, the passive resources can be assigned by 
switching to an active reservation. For more details about 
MRSVP to see [1].  

A. MIP and MDP Classes 
Internet best-effort service does not offer any guarantee 

about available bandwidth, network propagation delays, jitter 
and packet delivery. As consequence, there have been 
different research groups that tried to define some service 
models, in order to deal with applications variety in packet 
networks. Integrated Services (IS) networks are the results of 
such kind of works, as described in [1,8]. In a real network, 
resources reservations can be made by protocols, in order to 
satisfy QoS requirements, accounting the inherent time 
varying environmental conditions, more marked in radio 
communications (e.g. fading). In IS networks, each flow can 
receive different QoS, which must be negotiated at the 
beginning of sessions, between flows and network, by the 
RSVP or the MRSVP in mobile scenarios [1]. There are three 
provided service classes [5,8]: Mobility Independent 
Guaranteed (MIG, for hard and intolerant applications, that 
need absolute guarantees on packet delays), Mobility 
Independent Predictive (MIP, for tolerant real-time 
applications, that can suffer limited bounds on packet delays) 
and Mobility Dependent Predictive (MDP, for applications 
that can suffer continuous QoS degradations or connection 
droppings). In this paper, only MDP and MIP classes have 
been considered. As earlier discussed, the MRSVP is used for 
exchanging state information of wireless networks and it can 
offer soft QoS (adaptive QoS) for MIP and MDP services; so 
they have two different management in terms of admission 
control and bandwidth assignments. MIP services use a pre-
reservation phase to reserve bandwidth for mobile host in the 
current cell and in the cells that the mobile host will probably 
visit (passive and active reservations) [7]. 

B. Smooth Random Mobility Model 
The choice of an appropriate mobility model plays an 

important role in bandwidth assignments and networks 
dimensioning; many works in literature face this problem, but 

most of them are based on some simplifications about users’ 
behavior and do not lead to any analytical expression. So, the 
choice of the mobility model has a heavy impact on the 
obtained results, that can be unrealistic if the model is not 
appropriate. This work employs the Smooth Random Mobility 
Model (SRMM) proposed in [4] for a two-dimensional set of 
clusters; this model makes users’ movements smoother and 
more realistic than previous random models, because it relates 
speed and direction changes; in addition it leads to a general 
set of analytical expressions, that can be used for different 
wireless scenarios. The main concepts of the SRMM are two 
stochastic processes for direction ϕ and speed v: their values 
are correlated to the previous ones, in order to avoid 
unrealistic patterns and speed/direction changes; e.g. if a user 
is moving with high speed, a direction change cannot have 
high ϕ variations. Speed and direction changes follow two 
Poisson processes and different typical patterns or 
environments can be modeled by setting some parameters, like 
the set of preferred speeds. This model is also based on a set 
of preferred speeds in the range [vmin , vmax] and a mobile host 
moves with constant speed until a new target speed v* is 
chosen by the stochastic process, so it accelerates/decelerates 
in order to reach v*. The set of preferred speeds {vpref0, vpref1, 
…, vprefn} is also defined in order to obtain a non-uniform 
speed   distribution, such as: 

p(vpref)=p(vpref0)+p(vpref1)+…+p(vprefn)<1,  (1) 

with vpref0<vpref1<…<vprefn and vmax is a fixed threshold.  
Let t* denote the time at which a speed change event 

occurs and a new target speed v*=v*(t*) is chosen. More 
details on SRMM model can be found in [4]. 

III. CELL STAY TIME AND DIRECTION AWARE THRESHOLD-
BASED ALGORITHM

First of all, many simulations have to be carried out in 
order to obtain some information about users’ behavior; under 
a chosen mobility model (the SRMM in our case) and a certain 
cell coverage topology, the average Cell Stay Time (CST) can 
be observed, as in previous works [12], under the hypothesis 
of a Call Holding Time (CHT) exponentially distributed. It 
can be seen that the CST distribution can be well approached 
by a Gaussian distribution, with different means and standard 
deviations depending on some fixed mobility parameters. The 
Kolmogorov-Smirnov (KS) normality test [9] has been led out 
to evaluate the correctness of a Gaussian approximation of 
CST distributions under the SRMM; different p-values have 
been obtained [9], showing that there is a negligible error if a 
Gaussian approximation is employed for the CST distribution. 

As mentioned above, we used the SRMM with stop-turn-
and-go behavior for mobile hosts, with toroidal topology as in 
[4] and two preferred speeds vpref0=0 Km/h, vpref1=vmax Km/h; 
a Poisson call arrival time distribution has been considered. 
With the knowledge of the CHT and CST distributions, the 
number of “future visited” cells (including the active one) Ce 
can be evaluated as follows. It is possible to express the p.d.f. 
of CST in the following way: 
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where µ and σ are the obtained values of mean and standard 
deviation respectively; so XCST ∼ N(µCST,σ2

CST). 
So it is possible to evaluate the error of considered CST 

and to make a prediction based on confidence intervals and 
confidence levels, considering the worst case cell outage 
probability (COP). It is possible to select a cell stay time Tcst 
for a mobile host so that Prob(X< Tcst) <1-COP, where X is 
normally distributed. Tcst is called a (1-COP)*100% upper 
confidence bound for X. If the average call holding time Tcht is 
known, it is possible to consider the term Ce as:  
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Unfortunately, without directional information about 
users’ mobility patterns, the predicted value of Ce may be only 
used to make passive reservations in a circular way, on a 
cluster with a radius of Ce cells (centered in the cell where the 
call has been admitted - the active cell), under the worst case 
hypothesis of mobile hosts moving straight-forward; so, 
following the same approach of [12], from eq.3 only the value 
of Ce can be a-priori obtained with a negligible amount of 
error and the number of required passive reservations Cr for 
MIP services in a two-dimensional environment with 
hexagonal coverage areas increases with polynomial trend: 

Cr=3⋅Ce⋅(Ce-1) . (4) 

Without the analysis of the possible directional 
movements of the generic mobile host there will be a lot of 
resources wastage, due to the enormous amount of passive 
pre-reserved bandwidth over Cr cells, which increases for 
longer calls or for higher values of vmax. 

This work introduces a novel algorithm, based on some 
additional informations about users’ directional behavior and 
the above problem can be avoided with a lower value of Cr, 
making it nearer to Ce, depending on the adopted reservation 
threshold (as it will be shown). Figure 1 depicts the difference 
between a circular reservation policy and a directional one.  

Figure 1. Examples of circular reservation (a) and directional 
reservation (b) with hexagonal (n=6) approximation. 

The proposed idea is now illustrated. A generic coverage 
area, generally with a circular shape, can be approximated 
with a n-edge regular polygon as depicted in figure 2 (n is 
considered as an input control parameter); for higher values of 
n better approximations can be reached. A set Sho of n possible 
movement directions can be then obtained.  

Figure 2. Possible Access Point (AP) coverage area approximations 
with regular polygons. 

Let indicate them with d1...dn, where: 

dj=θ⋅(2⋅j-1)/2 rad., θ=2π/n rad. and j=1..n, (5)

so Sho={d1, .., dn} and |Sho|=n. 

Once n has been chosen, a square nxn hand-off directional 
probabilities (HDP) matrix M can be defined as follows: 

M(x,y)=p(y∈Sho  / x∈Sho)  (6) 

that is to say M(x,y) indicates the probability of a generic 
user i, for a fixed mobility model, of handing-in a wireless cell 
from direction x∈ Sho at time t=t0 and handing it out to 
direction y∈ Sho after N(µCST, σCST) amount of time. Note that 
matrix M depends only on the adopted mobility model and 
network cells subdivision and it is the same for all users in the 
system. The matrix M has the hand-in directions on the rows 
and the hand-out ones on the columns; it can be filled out 
through a first addicted campaign of simulations. Generally 
the M(x,y) elements are statistically distributed and not 
symmetric, so they have to be represented in the right way. If 
λ indicates the mean of CHT of MIP users, the predicted 
number of hand-off events for user i hi =Cei-1 can be obtained 
as in from eq.3. 

Let vhi be an information-support array, where vhi[k] with 
k=1..hi indicates the informations about the k-th future hand-
off of user i; i.e. each entry in the array vhi, vhi[k], can be a 
pointer to a list of tuples {cell_id, from, to, pcell_id} for the k-th 
hand-off event, where: 

- cell_id is a cell identifier; 
- from ∈ Sho, to ∈ Sho are respectively the hand-in and 

hand-out directions for the  cell_id cell; 
- pcell_id is the probability that user will be under the 

coverage of the cell_id cell after the k-th hand-off. 

The algorithm predicts to directions for each tuple, 
starting from cell_ids, from directions and pcell_id values. Let δ 
be an input threshold for the cell estimation phase (as for n, δ 
is an input control parameter that affects system performances, 
as will be illustrated in section IV). If the knowledge of the 
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first hand-off cell is approached, for example, with one of the 
policies proposed in [10,11], then the following threshold-
based predictor algorithm can be performed in order to obtain 
the complete set of predicted cells that MIP user i will 
probably visit, starting from the 2-nd hand-off event and going 
on until the hi-th one (hi ≥ 2): 

DIRECTION AWARE THRESHOLD-BASED PREDICTOR 

//for every predicted hand-off event of user i 
for (int k=2; k ≤ hi; k++) { 
  //index on the cells of the k-th hand-off event 
  int l=1; 
  //for each cell of the current k-th hand-off event 
  while (l ≤ vhi[k].size()) { 
    //let us analyze the current l-th tuple in the k-th element of 

vhi 
    current_tuple= vhi[k].elementAt[l]; 
    //the hand-in direction is known 

 curr_hand_in_dir= From(current_tuple.to); 
    //probability of user i of being in current cell after the 
    //(k-1)-th hand-off 
    pcurr=current_tuple.pcell_id; 
    //find the “more suitable” hand-out candidate cells over 
    //the n possible hand-out directions  
    for (int p=1; p ≤ n; p++) { 
     //the probability of hand-out on direction p after having 
     //handed in on direction curr_hand_in_dir is evaluated 
     curr_prob=M(curr_hand_in_dir, p)*pcurr; 
     //threshold based comparison 
     if  (curr_prob ≥ δ f(k)){ 
       //the current cell can be considered a valid candidate 
       id=Cell_id( current_tuple.cell_id,  p); 
       //the vhi vector must be updated 
       create_a_tuple{id, curr_hand_in_dir, p, curr_prob}; 
       append the tuple in vhi[k+1];  
     } 
    }//for p 
    l++; 
  }//while l 
   clean vhi[k+1] from duplicates; 
 }//for k 
create an empty cell identifiers list p_cells; 
//extract cell ids from tuples and append them to p_cells 
for (int k=1; k<=ti; k++) { 
  for (int l=0; l<vhi[k].size(); l++)  { 
    current_tuple=vhi[k].elementAt(l); 
    append current_tuple.cell_id to p_cells; 
  } 
} 
return p_cells. 

As earlier discussed, the candidate cell for the first hand-
off must be discovered, because no hand-in direction is 
available when a flow is admitted in a cell. With one of the 
approaches of [10,11] the current mobility direction dj ∈ Sho of 
user i is obtained and the term first_id= 
=first_Cell_id(current_id, dj) can be obtained, by an 

appropriate function first_Cell_id that evaluates the identifier 
of the cell that user i will visit (current_id is the identifier of 
the current cell). As shown in previous works [13], this 
approach leads to a negligible amount of error for the first 
prediction (around 3%-4%). At this point, a tuple {first_id,_ , 
dj, 1} can be created and appended in vhi[1]; the from direction 
cannot be discovered because user i has started its flow in the 
current first_id cell, without handin-in it from any direction 
while pfirst_id=1 because the probability of hand-out from 
first_id cell during the first hand-off is 1. Let us hypotize that 
the elements of M are constant values, so the main aim is now 
the prediction making for all the cells contained in the list of 
vhi[k], with k=2..hi. Each tuple in vhi[k] contains the hand-in 
direction, the cell identifier and the probability of user i of 
being in the cell after the (k-1)-th hand-off; through a 
threshold-based comparison the algorithm must decide what 
are the cells that user i will visit with higher probability when 
handing-out   the  cell  of  the  l-th  tuple  of  vhi [k], 
l=1…vhi[k].size() with a well known hand-in direction; the 
hand-in direction curr_hand_in_dir belongs to Sho and it 
specifies a unique row of M; the algorithm calculates the 
probability of hand-out from the current cell on direction p 
after having handed-in from direction curr_hand_in_dir when 
the probability of being in the previous cell before the current 
hand-off is pcurr: if the obtained value is higher than δ f(k), then 
the cell that is adjacent to the current one on direction p must 
be considered as a possible future cell and a tuple 
{adjacent_p_cell, from, p, curr_prob} is appended in 
vhi[k+1]. The exponent f(k) is a function of k; in this work it is 
assumed that f(k)=k but other kind of functions can be 
considered in the future; the power operation is necessary in 
order to take into account the increase of prediction error for 
higher values of k: since 0<δ<1, the comparison threshold 
∆=δk goes decreasing for higher values of k and a higher 
number of cells can be selected. The function “cell_id 
Cell_id(cell_id current_id, direction to)” returns the identifier 
of the cell adjacent to current_id cell on to direction; the 
function “direction From(direction to)” translates the hand-
out direction to of the previous cell in the hand-in direction of 
the next cell. A cleaning routine must be executed after 
finishing appending elements in vhi[k] position, because of 
possible duplications of cell identifiers.  

A different approach has been followed in [13]: a static 
reservation policy has been adopted and the HDP matrix has 
been applied through the selection of a prefixed number of 
columns without considering the gap in direction probabilities. 
The static scheme does not account for M structure and a 
prediction sequence i-j-k for the first three hand-off events 
must be specified as an input parameter, specifying the 
prediction of i cells for the first hand-off, j and k for the 
second and third ones. For details to see [13]. When repeating 
all the steps hi-1 times, a cleaning routine must be executed 
after finishing appending elements in vhi[k] position, because 
of possible duplications of cell identifiers; the same results can 
be obtained if the append function avoids duplicates. The 
prediction result is the set of cell identifiers of the tuples for 
each vhi list. 



TABLE I 
SIMULATION PARAMETERS OF THE SRMM. 

Number of preferred speeds npref = 2 
Preferred speeds (m/s) vpref0 = 0; vpref1 = 13.9 
Maximum acceleration (m/s2) amax = +2.5 
Minimum acceleration (m/s2) Amin = -4 
Preferred speed probability pv pv0=0.1; pv1=0.8 
Direction change prob. pϕ pf=0.1 

The hypotesis of M composed by constant values is not 
suitable: after many simulations and tests (following the 
approaches of [9]), we can conclude that the elements M(x,y) 
can be well approached with a Gaussian approximation, so 
M(x,y) is a couple of values, the mean and the standard 
deviation of the obtained distribution, as depicted in figure 5. 
So in the proposed pseudo-code M(x,y)=N(µx,y,σx,y). From 
these values of directional distributions, it can be seen that the 
average number of next predicted cells decreases for higher δ 
as illustrated in table II. 

0.0137, 0.0061 

0.0325, 0.0166 

0.3708, 0.0545 

0.3692, 0.0462 

0.3743, 0.0554 

0.0318, 0.0170 

0.0244, 0.0128 

0.0132, 0.0044 

0.0430, 0.0203 

0.2798, 0.0464 

0.5094, 0.0581 

0.0426, 0.0223 

0.2779 ,0.0429 

0.0399 ,0.0198 

0.0125 ,0.0030 

0.0249 ,0.0133 

0.0440 ,0.0210 

0.5094 ,0.0579 

0.3663, 0.0497 

0.3700, 0.0525 

0.0316, 0.0174 

0.0129, 0.0060 

0.0328, 0.0173 

0.3769, 0.0556 

0.3034, 0.0476 

0.5056, 0.0554 

0.0521, 0.0227 

0.0248, 0.0138 

0.0127, 0.0031 

0.0427, 0.0212

0.0256, 0.0132 

0.0549, 0.0251 

0.5054, 0.0552 

0.2994, 0.0461 

0.0437, 0.0213 

0.0145, 0.0071 

Figure 5. Directional probabilities matrix M in terms of µ,σ for the 
mobility parameters of table I, with n=6. 

TABLE II 
AVERAGE NUMBER OF PREDICTED CELLS FOR DIFFERENT THRESHOLD VALUES 
δ values 0.6 0.5 0.2 0.1 0.05

pred. cells 1 1.76 1.76 5.18 5.18 

IV. PERFORMANCES EVALUATION

Our network consists of 7 clusters of cells, like the ones 
depicted in figure 1; users moves toroidally, according to the 
SRMM, with the same mobility parameters of table I.  An 
exponentially distributed CHT with mean λ=180s has been 
considered. Simulation results are compared with those of the 
static-scheme of [13] and some enhancements are shown.  

Figure 6 illustrates the average system utilization if MIP 
and MDP flows can be admitted; the threshold δ is fixed to 
0.01: if only MDP traffic is allowed (so MIP-MDP 
percentages are set to 0 and 100 respectively) there is an 
increasing trend for higher erlang (requests/s) values from 
75.6% to 95.4%, because of the higher active assigned 
bandwidth; the utilization goes diminishing for increasing 
percentages of MIP flows, because of the higher presence of 
passive and unused bandwidth but the trend is always 
increasing for the same previous reason; perhaps, as it can be 
seen, if only MIP traffic is admitted into the system, the 
utilization drastically goes down and it is slightly decreasing 
for higher erlang values, because of  the higher presence of 

unused passive bandwidth (from a minimum level of 10.34% 
of 25 erlang to a maximum level of 13.11% of 5 erlang). For 
the other values of δ  (we simulated from 0.01 to 0.6) the 
“only-MDP” scenario is not affected, because there are no 
passive reservations to do, while for intermediate percentages 
(040-060 and 060-040) the utilization does not decrease in a 
sensible way; if “only-MIP” traffic is allowed in the system, 
the utilization falls down to 5-6% for δ=0.6. An increase of the 
threshold value means, as we see later, a higher value of 
predicted cells, so a higher presence of passive pre-
reservations, if “only-MIP” traffic is allowed. The comparison 
with the static policy of [13] with “only-MIP” traffic is also 
shown; dashed lines represent the maximum and minimum 
values under the static policy, obtained for 25 erlang and i=1 
or i=3 respectively: the static policy performs better in terms 
of utilization for i=1, but this value is not proposeable 
because, as shown in figure 7, it leads to a heavy amount of 
prediction error (over 50%) beginning from the second hand-
off. For other i values (e.g. i=3) the utilization falls down, 
under the minimum obtained with the proposed scheme. 

Figure 6. Average system utilization for different erlang values. 

Figure 7. Average prediction error for different hand-off events with 
static and threshold-based schemes. 

Figure 7 depicts the committed error on predicting future 
cells only for MIP users: for the n-th hand-off event, it is 
calculated as the ratio between the number of MIP users that 
handed-in a cell during the n-th hand-off event without finding 
an available bandwidth pre-reservation and the number of total 
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MIP users that made the n-th hand-off. The best results are 
evident for δ =0.01, because the error is maintained below 8% 
for all hand-off events. For other combinations of i-j-k values 
there is always a δ  value that offers better performances. This 
suggests that the choice of low δ  values (like 0.01 or 0.05) 
offers a good trade-off between error and system utilization. 

 

Figure 8. Average prediction error for third hand-off with (a) 
static reservation, (b) dynamic reservation. 

Figures 8a and 8b depict the average error for the 3rd 
hand-off event: the same trend of the previous curves (2nd 
hand-off event) is not obtained for the static case. Further for 
decreasing values of δ the number of predicted cells for the 3rd 
hand-off also increases, this is not verified for the static case, 
because the considered sequences, after the ijk=123 one, 
assume a lower number of predicted cells for the 3rd hand-off 
than the ijk=123 sequence. For this reason the same trend of 
the 2nd hand-off case is not obtained and the error goes 
increase for the sequences ijk=223 and ijk=321. Also in this 
case, more suitable results are obtained for ijk=123 and δ=0.1 
or δ=0.05, because the error is lower than 10% for these input 
values. 

The error on the first hand-off prediction is not referred 
here because it is not based on the proposed techniques; the 
first hand-in direction can be predicted as [10,11]. An 
increasing number of predicted cells for the static case is 
compatible with the problem of the increasing prediction error 
for consecutive hand-off events: the error committed in the 
prediction of the i-th hand-out direction propagates itself while 
predicting the (i+1)-th one; if an increasing number of 
predicted cells is assumed, then  the error decreases. 

V. CONCLUSIONS 
A novel threshold-based prediction algorithm has been 
proposed, in order to manage the QoS in a 2D wireless 
environment. It faces the problem of pre-reserving passive 
bandwidth for MIP flows over the cells that compose the 
system, trying to minimize the wastage of passive resources. It 
is based on the knowledge of the average CST and some 
informations about users’ mobility behavior. The proposed 
scheme implements a dynamic matrix analysis through an 
input threshold value, solving the problem of previous static 
schemes that have to specify the number of cells on which 
passive reservations must be made for different consecutive 
hand-off events. Many simulations have been carried out in 
order to make a comparison with previous schemes. 
Simulations results have revealed that the threshold-based 
scheme performs better than the previous ones, because it 
reduces the average number of predicted cells, while leading 
the error to slightly lower levels; in addition it dynamically 
decides how many cells must be involved in the pre-
reservation phase. 
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