
Abstract—Recently there has been a lot of research and 
development in wireless networking and mobility management, 
with the main purpose of connection handling between mobile 
hosts and base stations or access points. QoS guarantee is a very 
important issue in wireless communications, when mobile nodes 
move among different coverage areas. This paper presents a 
general prediction technique based both on the analysis of Cell 
Stay Time and on the direction probabilities of hand-in and 
hand-out events of mobile nodes from wireless cells. User 
mobility has been analyzed, in order to reduce passive resource 
reservations, with a high gain in system utilization. In particular, 
a threshold-based algorithm is presented, trying to take into 
account the mobility behavior of mobile users, through the 
analysis of a directional probabilities matrix. The performances 
of the 2D wireless system have been evaluated in terms of 
prediction error and system utilization; in addition, some 
comparisons with older prediction schemes have been made. 

Index Terms—QoS, WLAN, MIP, Smooth Random Mobility 
Model, Predictive Reservation, Threshold-based 

I. INTRODUCTION 
The satisfaction of QoS guarantees in wireless environments 

is a key issue in the networking scenario, especially when 
dealing with handover events, when service continuity has to 
be maintained and quality degradations must be avoided.  

One of the mechanisms that guarantees a good connection 
level is the passive reservation policy [1,5,8] based on the in-
advance (or passive) reservations concept. In mobile systems 
this policy can be applied with certain protocols only if some 
information about user mobility behaviour is known [2,3,8]. 

The choice of a mobility model has great impact on the 
obtained results and they can be unrealistic if the model is not 
appropriate. We employed the Smooth Random Mobility 
Model (SRMM) [4] for a two-dimensional set of cell clusters 
because it makes user movements smoother and more realistic 
than previous random models, relating speed and direction 
changes. In addition, it leads to a general set of analytical 
expressions, which can be used for different wireless 
environments (urban, rural, etc.). 

The new proposed idea does not depend on the specific 
mobility model, because it is only based on the knowledge of 
two important statistics: the Cell Stay Time (CST) distribution 
and the Hand-off Directions Probabilities values (HDP) that 
can be always obtained; HDP values are necessary in order to 
consider future positions of mobile hosts. So, combining CST 

and HDP information, a prediction technique is introduced: a 
threshold-based algorithm, which uses CST and HDP values 
to dynamically select the number of cells in which the 
bandwidth is to be reserved in advance, is proposed. It is 
shown that the obtained results are better than those of the 
previously proposed reservation schemes, based on a static 
reservation policy such as presented in [13]. The threshold-
based algorithm performs better, because it is able to better 
adapt itself to dynamic mobile host movements. 

This paper is organized as follows: section II gives a brief 
overview of the SRMM, used as reference for host 
movements; the threshold-based algorithm is presented in 
section III; simulation results and conclusions for a 802.11 
scenario are respectively summarized in sections IV and V. 

II. SMOOTH RANDOM MOBILITY MODEL

Choosing an appropriate mobility model plays an important 
role in bandwidth assignments and network dimensioning; 
many works in the literature face this problem, but most of 
them are based on some simplifications about user behavior 
and do not lead to any analytical expression. The obtained 
results can be unrealistic if the model is not appropriate. This 
work employs the Smooth Random Mobility Model (SRMM) 
proposed in [4] for a two-dimensional set of cell clusters. It 
relates speed and direction changes and it leads to a general set 
of analytical expressions, which can be used for different 
wireless scenarios. The main concepts of the SRMM are two 
stochastic processes for direction ϕ and speed v: their values 
are correlated to the previous ones, in order to avoid 
unrealistic patterns and speed/direction changes; e.g. if a user 
is moving fast, a direction change cannot have high ϕ 
variations. Speed and direction changes follow two Poisson 
processes and different typical patterns or environments can 
be modeled by setting some parameters, like the set of 
preferred speeds. This model is also based on a set of 
preferred speeds in the range [vmin , vmax] and a mobile host 
moves with constant speed until a new target speed v* is 
chosen by the stochastic process, so it accelerates/decelerates 
in order to reach v*. The set of preferred speeds {vpref0, vpref1, 
…, vprefn} is also defined in order to obtain a non-uniform 
speed distribution like the one depicted in figure 1, with 
p(vpref)= p(vpref0) + p(vpref1) + … + p(vprefn) <1, 
vpref0<vpref1<…<vprefn and vmax is a fixed threshold.  
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Let t* denote the time at which a speed change event occurs 
and a new target speed v*=v*(t*) is chosen. Now, an 
acceleration a(t*) ≠ 0 must be set. It is taken from: 

max

1
a for max0 aa ≤<

=)(ap  (1) 
  0 else 

if v*(t*) > v(t*), or from 

max

1
a for 0min <≤ aa

=)(ap  (2) 
0 else 

if v*(t*) < v(t*). Acceleration a is set to 0 if  v*(t*)=v(t*). Then, 
two other variables are used: amax and amin. The first one 
represents the maximum possible acceleration and the second 
one the maximum possible deceleration. In discrete instant 
times of ∆t duration, the new speed v(t) is changed according 
to the uniformly accelerated motion as follows: 

v(t) = v(t-∆t)+a(t)⋅ ∆t  (3) 

until v(t) achieves v*(t). amax and amin values are fixed to the 
values specified in table I in the section III. More details on 
SRMM model can be found in [4]. 

III. CST ANALYSIS AND THRESHOLD-BASED PREDICTION 
ALGORITHM

A. Passive reservation problem 

As discussed earlier, the guarantee of a certain level of 
QoS in a wireless scenario (the 802.11 in this work) is a key 
issue in the world of networking. The Mobile ReSerVation 
Protocol (MRSVP) [1] is able to make active and passive 
reservations [12] in order to pre-reserve a certain amount of 
bandwidth. In our work we have considered Mobility 
Dependent and Independent Predictive services (MDP and 
MIP respectively) [7]. In particular MIP users require the 
absence of service degradations during hand-off events. The 
proposed idea is now illustrated. First of all, many simulations 

have to be carried out in order to obtain some information 
about user behavior. Under a chosen mobility model (the 
SRMM in our case) and a certain cell coverage topology, the 
average Cell Stay Time (CST) can be observed, as in previous 
works [12], under the hypothesis of an exponentially 
distributed Call Holding Time (CHT). It can be seen that the 
CST distribution can be well approached by a Gaussian 
distribution, with different means and standard deviations 
depending on some fixed mobility parameters. The 
Kolmogorov-Smirnov (KS) normality test [9] was carried out 
to evaluate the correctness of a Gaussian approximation of 
CST distributions under the SRMM. Different p-values [9] 
were obtained, showing that there is a negligible error if a 
Gaussian approximation is employed for the CST distribution.  

As mentioned above, we used the SRMM and mobile 
hosts follow the stop-turn-and-go behavior with toroidal 
topology as in [4], with two preferred speeds vpref0=0 Km/h, 
vpref1=vmax Km/h. A Poisson call arrival time distribution was 
considered. With the knowledge of the CHT and CST 
distributions, the number of visited cells (including the active 
one) Ce can be evaluated. Unfortunately, without directional 
information about user mobility patterns, the predicted value 
of Ce may be only used to make passive reservations in a 
circular way, on a cluster with a radius of Ce cells, centered in 
the cell where the call has been admitted (the active cell); so, 
following the same approach as [12], only the value of Ce can 
be obtained a-priori with a negligible amount of error and the 
number of required passive reservations Cr for MIP services in 
a two-dimensional environment with hexagonal coverage 
areas increases with a polynomial trend, such as follows: 

Cr=3⋅Ce⋅(Ce-1) (4) 

This work introduces a novel algorithm, based on some 
additional information about user directional behavior, so the 
above problem can be avoided and the value of Cr can be 
decreased, making it nearer to Ce, depending on the adopted 
reservation threshold. Figure 2 depicts the difference between 
a circular reservation policy and a directional one, with an 
appreciable gain in terms of the number of cells affected by 
passive reservations.  

Figure 2. Examples of circular reservation (a) and directional 
reservation (b) with hexagonal approximation. 

a) Circular reservation with Ce=3, Cr=19; b) Directional reservation with Ce=Cr=3, nho=2;
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Figure 1. Example of probability distribution for n preferred speeds. 



B. Threshold based approach 

A generic coverage area, generally with a circular shape, 
can be approximated with an n-edge regular polygon as 
depicted in figure 3 (n can be considered as an input control 
parameter): 

Figure 3. Possible Access Point (AP) coverage area approximations 
with regular polygons. 

As can be seen from figure 3, for higher values of n better 
approximations can be reached. At this point, a set Sho of n 
possible movement directions can be obtained: let us indicate 
them with d1...dn, where: 

dj=θ⋅(2⋅j-1)/2 rad., θ=2π/n rad. and j=1..n,  

so Sho={d1, .., dn} and |Sho|=n. 

Once n has been chosen, a square nxn mobility probabilities 
matrix M can be defined with the following elements: M(x,y)= 
px,y=pCMIP(x,y)=p(y∈Sho/x∈Sho), that is to say M(x,y) indicates 
the probability of generic user i, for a fixed mobility model, of 
handing-in a wireless cell from direction x∈ Sho and handing it 
out to direction y∈ Sho after µCST amount of time. Note that 
matrix M depends only on the adopted mobility model and 
network cells subdivision and it is the same for all users in the 
system. Matrix M has the hand-in directions on the rows and 
the hand-out ones on the columns. It can be filled out through 
a first campaign of simulations. Generally the M(x,y) elements 
are statistically distributed and not symmetric, so they have to 
be represented in the right way as explained later. If λ 
indicates the mean of CHT of MIP users, the predicted number 
of hand-off events for user i hi =Cei-1 can be obtained such as 
shown in [12]. Let vhi be an information support-array, where 
vhi[k] with k=1..hi indicates the information about k-th future 
hand-off of user i; i.e. each entry in the array vhi, vhi[k], can 
be a pointer to a list of tuples {cell_id, from, to, pcell_id} for k-th 
hand-off event. cell_id is a cell identifier and from ∈ Sho, to ∈ 
Sho are respectively the hand-in and hand-out directions for the  
cell_id cell. pcell_id is the probability that the user will be under 
the coverage of the cell_id cell after the k-th hand-off; the 
algorithm predicts to directions, given cell_ids, from directions 
and pcell_id values. Let δ be an input threshold for the cell 
estimation phase (as for n, δ is an input control parameter that 
affects system performances, as illustrated in section IV). As 
we will see later, if knowledge of the first hand-off cell is used 
for example, with one of the policies proposed in [10,11], then 
the following threshold-based predictor algorithm can be 
performed in order to obtain the complete set of predicted 

cells that MIP user i will probably visit, starting from the 2-nd 
hand-off event and going on until the hi-th one: 

THRESHOLD-BASED PREDICTOR 

//for every predicted hand-off event of user i 
for (int k=2; k ≤ hi; k++) { 
  //index on the cells of the k-th hand-off event 
  int l=1; 
  //for each cell of the current k-th hand-off event 
  while (l ≤ vhi[k].size()) { 
    //let us analyze the current l-th tuple in the k-th element 
    current_tuple= vhi[k].elementAt[l]; 
    //the hand-in direction is known 
    curr_hand_in_dir= From(current_tuple.to); 

 //probability of user i of being in current cell after the 
 //(k-1)-th hand-off 

    pcurr=current_tuple.pcell_id; 
    //find the “more suitable” hand-out candidate cells over 

 //the possible n hand-out directions  
    for (int p=1; p ≤ n; p++) { 
     //the probability of hand-out on direction p after having 

  //handed in on direction curr_hand_in_dir is evaluated 
     curr_prob=M(curr_hand_in_dir, p)*pcurr; 
     //threshold based comparison 
     if  (curr_prob ≥ δ f(k)){ 
        //the current cell can be considered a valid candidate 
        id=Cell_id( current_tuple.cell_id,  p); 
        //the vhi vector must be updated 
        create_a_tuple{curr_hand_in_dir, p, id, curr_prob}; 
        append the tuple in vhi[k+1];  
      } 
    }//for p 
    l++; 
  }//while l 
   clean vhi[k+1] from duplicates; 
 }//for k 
create an empty cell identifiers list p_cells; 
//extract cell ids from tuples and append them to p_cells 
for (int k=1; k<=ti; k++) { 
  for (int l=0; l<vhi[k].size(); l++)  { 
    current_tuple=vhi[k].elementAt(l); 
    append current_tuple.cell_id to p_cells; 
  } 
} 
return p_cells. //returns the identifiers of predicted cells  

C. System parameters 

As discussed earlier, the candidate cell for the first hand-
off must be discovered, because no hand-in direction is 
available when a flow is admitted in a cell. With one of the 
approaches of [10,11] the current mobility direction dj ∈ Sho of 
user i is obtained and the term first_id= 
=first_Cell_id(current_id, dj) can be obtained, by an 
appropriate function first_Cell_id() that evaluates the 
identifier of the cell that user i will visit (current_id is the 
identifier of the current cell). As shown in previous works 
[13], this approach leads to a negligible amount of error for 

n=4 n=5 n=6 n=8



the first prediction (around 3%-4%). At this point, a tuple 
{first_id,_ , dj, 1} can be created and appended in vhi[1]; the 
from direction cannot be discovered because user i has started 
his flow in the current first_id cell, without handing it in from 
any direction while pfirst_id=1 because the probability of hand-
out from first_id cell during the first hand-off is 1. Let’s 
suppose that the elements of M are constant values, so the 
main aim now is prediction making for all the cells contained 
in the list of vhi[k], with k=2..hi. Each tuple in vhi[k] contains 
the hand-in direction, the cell identifier and the probability of 
user i of being in the cell after the (k-1)-th hand-off. Through a 
threshold-based comparison the algorithm must decide what 
are the cells that user i will visit with higher probability when 
handing-out   the  cell  of  the  l-th  tuple  of  vhi [k], 
l=1…vhi[k].size() with a well-known hand-in direction; the 
hand-in direction curr_hand_in_dir belongs to Sho and it 
specifies a unique row of M. The algorithm calculates the 
probability of hand-out from the current cell on direction p 
after having handed-in from direction curr_hand_in_dir when 
the probability of being in the previous cell before the current 
hand-off is pcurr: if the obtained value is higher than δ f(k), then 
the cell that is adjacent to the current one on direction p must 
be considered as a possible future cell and a tuple {from, p, 
adjacent_p_cell, curr_prob} is appended in vhi [k+1]. The 
exponent f(k) is a function of k. In this work it is assumed that 
f(k)=k but other kind of functions can be considered in the 
future; since 0<δ<1, the comparison threshold ∆=δk goes 
decreasing for higher values of k and a higher number of cells 
can be selected. The function “cell_id Cell_id(cell_id 
current_id, direction to)” returns the identifier of the cell 
adjacent to current_id cell on to direction. The function 
“direction From(direction to)” translates the hand-out 
direction to of the previous cell in the hand-in direction of the 
next cell. A cleaning routine must be executed after finishing 
appending elements in vhi[k] position, because of possible 
duplications of cell identifiers. A different approach has been 
followed in [13]: a static reservation policy has been adopted 
and the HDP matrix has been applied through the selection of 
a prefixed number of columns without considering the gap in 
direction probabilities. For details to see [13]. 

TABLE I 
SIMULATION PARAMETERS OF THE SRMM. 

Number of preferred speeds npref = 2 
Preferred speeds (m/s) vpref0 = 0; vpref1 = 13.9 
Maximum acceleration (m/s2) amax = +2.5 
Minimum acceleration (m/s2) Amin = -4 
Preferred speed probability pv pv0=0.1; pv1=0.8 
Direction change prob. pϕ pf=0.1 

The hypothesis of M composed of constant values is not 
suitable: after many simulations and tests (following the 
approaches of [9]), we can conclude that the elements M(x,y) 
can be well approached with a Gaussian approximation, so 
M(x,y) is a couple of values, the mean and the standard 
deviation of the obtained distribution, as depicted in figure 4. 
So in the proposed pseudo-code M(x,y)=N(µx,y,σx,y). 

IV. PERFORMANCES EVALUATION

Our network consists of 7 clusters of cells, like the ones 
depicted in figure 2; users moves toroidally, according to the 
SRMM, with the same mobility parameters of table I.  An 
exponentially distributed CHT with mean λ=180s was 
considered. Simulation results are compared with those of the 
static-scheme of [13] and some enhancements are shown.  
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Figure 4. Directional probabilities matrix M in terms of µ,σ for the 
mobility parameters of table I, with n=6. 
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Figure 5. Average system utilization for different δ values. 

Figure 5 shows the course of the average system utilization 
versus δ values. Dashed lines represent the maximum and the 
minimum obtained values for the static policy of [13]. System 
utilization decreases for lower δ values: a higher number of 
predicted cells is foreseen, so a higher amount of passive 
reserved bandwidth is necessary. Utilization also decreases for 
higher percentage of MIP traffic, because of the higher 
number of passive reservations and less MDP traffic. As 
discussed above, higher values of predicted cells lead to a 
negligible prediction error, but the system utilization 
noticeably decreases. The maximum value of the static case is 
obtained with the prediction sequence 1-1-1 (i-j-k are the 
number of desired predicted cells for first, second and third 
hand-off respectively) and 20%-80% traffic percentages for 
MIP and MDP users, while the minimum with 3-2-1 and 80%-
20%. As shown in the figure, the performances in terms of 
system utilization are comparable for static and dynamic 
cases, but the second one performs better for higher 
percentages of MIP flows. 

In figure 6 another comparison between the static scheme 
of [13] and the threshold-based one is made, in terms of the 
average number of predicted cells for different hand-off 
events. Dashed lines refer to the static scheme for different i-j-
k values as in [13], while continuous ones refer to the 
threshold-based scheme for different δ values. The arrow 
indicates decreasing values of δ. The average number of per-

MIP – MDP traffic percentages



flow predicted cells does not depend on the erlang (requests/s) 
value and the different continuous curves refer to δ=0.60 
δ=0.20 and δ=0.05. For the static scheme the curves for 1-1-1, 
1-2-3 and 3-3-3 sequences are illustrated. It is shown that 
introducing the threshold, a gain in terms of predicted cells is 
obtained, with some improvements in system utilization, as 
described earlier: the difference between the two policies is 
more evident for lower δ values and higher hand-off number.  

Figure 6. Average number of predicted cells per-flow for different i-j-
-k and δ values. 
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Figure 7. Average prediction error for second hand-off events with 
static and threshold-based schemes. 

Figure 7 shows the committed error on predicting future 
cells for the 2nd hand-off event using dynamic policies (for the 
static case, only the maximum and minimum obtained values 
are shown): the error has a decreasing course because, as 
earlier discussed in section III, decreasing δ values lead to a 
higher number of predicted cells; that is to say an MIP user 
has a lower probability of suffering a reservation outage after 
a hand-off event. Both curves start with high error values (near 
to 64% and 42%) that drastically reduce (until 5% and 0). In 
the dynamic case, for δ=0.1, the number of  predicted cells is 
always near to 6, so there are no errors in choosing the right 
hand-out direction (circular reservation). Setting δ to lower 
values can make the error negligible but MIP system 
utilization cannot be acceptable if compared to the MDP one. 
Among the simulated input prediction sequences, the ijk=123 
sequence offers a good trade-off between error (under 10%) 
and utilization, as well as the value of δ=0.2. This suggests 
that the choice of low δ  values (like 0.2 or 0.3) offers a good 
trade-off between error and system utilization. 

V.  CONCLUSIONS 
A novel threshold-based prediction algorithm has been 

proposed, in order to manage the QoS in a 2D wireless 
environment. It faces the problem of pre-reserving passive 
bandwidth for MIP flows over the cells that compose the 
system, trying to reduce the wastage of passive resources. It is 
based on the knowledge of the average CST and some 
information about user mobility behavior. The proposed 
scheme implements a dynamic matrix analysis through an 
input threshold value, solving the problem of previous static 
schemes that have to specify the number of cells on which 
passive reservations must be made for different consecutive 
hand-off events. Many simulations have been carried out in 
order to make a comparison with previous schemes. 
Simulations results have revealed that the threshold-based 
scheme performs better than the previous ones, because it 
reduces the average number of predicted cells,with a slight 
decrease in errors. In addition, it dynamically decides how 
many cells must be involved in the pre-reservation phase. 
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