
Abstract— In these last years, many studies have focalized on the 
design of reliable under water acoustic communication systems. 
However, the ocean acoustic communication channel exhibits strong 
amplitude and phase fluctuations and the phenomena of diffraction, 
refraction and reflection. Due to the complexity of environment, the 
motions of transducers, sea surface, etc., the underwater acoustic 
signals exhibit random temporal and spatial frequency fluctuations 
in both amplitude and phase. These highly space, time and 
frequency dependent features introduce numerous obstacles for any 
attempts to establish reliable and long-range underwater acoustic 
communications. Therefore, it is very important to model a so 
complex channel. In this paper, we propose a new multipath 
channel model for shallow underwater acoustic communications. In 
particular, our model takes into account the effects due to spreading 
loss, scattering and reflections.  

Index Terms—Underwater communications, Acoustic channel, 
underwater reflections, sound intensity loss. 

I. INTRODUCTION 
NDERWATER  acoustic (UWA) communications have been
used in military applications for a long time. Compared to 

radio waves, sound has superior propagation characteristics in 
water, which make it the favorite technology for this specific 
scenario. However, the shallow-water acoustic channel is 
different from the radio channels in many aspects. The available 
bandwidth of the UWA channel is limited and it depends on both 
range and frequency. The acoustic signals are affected by time-
varying multipath, which may create severe inter symbol 
interference (ISI) and large Doppler shifts and spreads. These 
characteristics restrict the range and bandwidth for the reliable 
communications. The propagation speed in the UWA channel is 
five orders of magnitude lower than the speed of the radio wave. 
When designing a network protocol, it should be given special 
attention to these aspects. These highly space, time and 
frequency dependent features pose numerous obstacles for any 
attempts to establish reliable and long-range underwater acoustic 
communications. Therefore, it is very important to model this 
complex channel. The main goal of this paper is to modeling 
how environmental conditions affect underwater transmission. 
For this purpose a mathematical formulation taking into account 
the effects due to spreading loss, scattering and reflections, was 
presented. The paper is organized as follows: in Section II 
related works are described, a brief introduction of underwater 
sound propagation is presented in Section III, the underwater 
channel modeling is described in Section IV and Conclusions are 
summarized in section V. 

II. RELATED WORK

In literature, there are several articles dealing with Under 
Water Acoustic Sensor Networks (UWASNs). On the shallow 
water acoustic channel, the transmission systems are exposed to 
some problems including non stationary properties of underwater 
channel and presence of multiple paths. One of the first works 
that tried to solve these  problems was [1]. In this paper the 
authors suggest a multicarrier transmission system based on the 
OFDM principle, whose D.F.T implementation is quite simple. 
The performance of this transmission was evaluated by 
simulative experiments carried out in the Ocean sea scenario 
leading to satisfying results. However, there are no performance 
evaluations taking into account as noise severely degrades 
transmitted signal. In our work, instead, great importance to the 
various noise factors and  phenomena of degradation has been 
given. The benefits of using Orthogonal Frequency Division 
Multiplexing and coded OFDM for underwater acoustic 
communications are exposed in [2]. In [3] design criteria and 
analysis procedures for a practical OFDM underwater 
communications system are presented. Numerical simulations 
demonstrate that OFDM technique is robust at the frequency 
selectivity and time selectivity. Motivated by the success of 
OFDM in radio channels, Stojanovic et al. in [4] investigate the 
OFDM use for underwater acoustic channels. In [5], it is 
provided a reference framework for the classification of 
underwater  acoustic communication systems.  It proposes a 
model for frequency bands allocation, like that used in radio 
systems. It also defines "superficial" acoustic channel at various 
depths and evaluates the performance of a range of 
communications systems developed at the University of 
Birmingham, UK. In [6], it is reported the description of the 
underwater channel characteristics in terms of range, bandwidth, 
and degradation of underwater acoustic signal due to multipath 
fading and absorption. In addition, coherent/non-coherent 
modulation schemes are in detail analyzed and methods of signal 
processing are suggested to compensate multipath. The 
improvements made in the underwater acoustic telemetry from 
1982 until now are examined in [7]. The research challenges 
include the physical underwater channel, the receiver structure, 
the submarines network devices and modulation techniques. One 
of the major limits of the underwater sensor networks is due to 
the battery life in sensor node. In [8] it is provided a method to 
estimate battery life and consumption of power of each  node in a 
UWASN. The analysis is based on four independent parameters: 
distance between two adjacent nodes, carrier  frequency, 
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frequency of data update and number of nodes per cluster. A 
discussion on the existing network architectures (2-D and 3-D) in 
underwater environment is reported in [9]. Particular attention is 
paid to the development of efficient network topologies and 
future design challenges for each level of the protocol stack. The 
main differences between the major terrestrial sensor networks 
and the underwater sensor networks are also here reported. It is 
also provided a detailed overview about the existing solutions for 
MAC, network and transport layer protocols.  Acoustic short-
range communications, MAC layer protocols, synchronization, 
issue of high latency and scheduling algorithms are described in 
[10]. Another important issue regards the high level channel 
modeling. In [11], the authors propose an approach to obtain a 
high level Markov chain based channel model. However, this 
approach is related to the physical phenomena taken into 
account, so an accurate physical model is needed. Since 
underwater channel characteristics are highly space-time 
variable, it is not easy to build a physical model in which all 
phenomena are considered. The goal of this work is to combine 
the acoustic intensity loss, depth and shallow reflections and 
propagation delay in a single underwater channel model. 

III. OCEAN AS TRANSMISSION MEDIUM

The propagation of sound in a non-uniform medium is 
described by an equation obtained by linearization of the 
hydrodynamic equations of an ideal fluid. The starting equations 
are the Euler equation and the continuity equation from which 
we obtain the Helmholtz equation which is solved by imposing 
appropriate boundary conditions, which allow us to obtain a 
closed solution. One possible solution is the solution of spherical 
wave, which describes the field emitted by a omni-directional 
source and it is given by: 
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Another simple and important solution to the hydrodynamic 
equation is the so-called plane wave solution: 

� � �
�������� � ��� � �����     (2) 
The solution of Helmholtz equation in the form of plane wave is 
very important because in many cases, especially at sufficiently 
large distances from the source, the sound wave can be 
represented as a plane wave, or rather an overlap of plane waves. 
The variation of the speed sound c in the ocean is relatively 
small. Normally c assumes values between 1450 and 1540 m/s. 
However, even such small variations of c have a profound effect 
on the propagation of sound in the ocean. The sound speed can 
be directly measured or calculated using empirical formulas, if 
you know the temperature T, salinity S, and the hydrostatic 
pressure P or the depth z. The accuracy of the most 
comprehensive empirical formula is comparable to that of 
modern velocimeter measurements. However, the formulas that 
offer such accuracy are very complicated. A simple equation, but 
less accurate, to calculate the speed of sound in water, in m/s, is: 

c=1449.2+4.6T-0.055T2+0.00029T3+�1.34-0.010T��S-35�+0.016z ��� 
where T is the temperature in °C, S the salinity in ppm !"#$, z 
the depth in meters and c the speed of sound in m / s. 

IV. UNDERWATER MULTIPATH CHANNEL MODEL

A. Acoustic Intensity Loss 
The acoustic waves propagate in the ocean are weakened, 

mainly due to two phenomena, the spreading and absorption 
([12],[13]). The losses due to spreading is a measure of the 
weakening signal due to acoustic wave geometric propagation far 
away from the source. In acoustics underwater propagation, we 
can observe two fundamental geometries, spherical geometry and 
cylindrical geometry. In an infinitely extended and homogeneous 
medium, the power generated by a source is radiated in all 
directions, on the surface of a sphere. This type of propagation is 
called spherical spreading. The losses due to the spreading of 
spherical type are calculated as: 
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In the case of spherical spreading so the intensity decreases with 
r2. The cylindrical spreading occurs where the propagation 
medium is confined between two reflecting planes. The distance 
between these two levels, i.e. h, must be greater than ten times 
the wavelength. Losses due to cylindrical spreading is therefore: 
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In our model, the term representing the loss of sound pressure 
due to spherical spreading along each ray of length D can be 
written as 
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This term is modified in case of cylindrical spreading. In this 
case, the intensity of the sound pressure decays linearly with 
distance then: 
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It is easy to derive geometrically the length of each ray. Let us 
call d1 the depth at which the source is located, d2 the receiver 
depth, h the height of the water column and R the transmission 
range. The distance covered by direct ray, denoted by D00, is 
equal to: 

7## � =�/ � �>9 ? >/�/       (8) 
Let us call Dsb the distance covered by a ray which has its first 
reflection on the surface, where s represents the surface 
reflections whereas b takes into account reflections on the 
seabed: 

7&@ � =�/ � !ABC � >9 ? �?D�&�@>/$/    (9) 
Instead, Dbs is the distance covered by a ray which has its first 
reflection on the seabed: 

7@& � =�/ � !ABC ? >9 � �?D�@�&>/$/   (10) 
When sound is propagated in the ocean, part of its acoustic 
energy is continuously absorbed, for example, is transformed 
into heat. This absorption is largely due to the viscosity of the 
liquid, especially in the frequencies between 100 Hz and 100 
kHz. Another reason for the decay of sound intensity with 
distance in the ocean is the phenomenon of sound waves 
scattering due to inhomogeneities of various kinds. Normally, 
you can only measure the combined effect of both absorption and 
scattering. We refer to it as the sound attenuation. An 



experimental formula for calculating the attenuation coefficient � 
[dB/km] at frequencies between 3 kHz and 500 kHz is: 

E � FGHF I DJK L6MNON;
NO;PN; � QN;

NO
R �D ? HGST I DJ�
U�  (11)

where � � AG�T I DJ�V, W � �G�F I DJ�V, S is the salinity [‰], P is 
the hydrostatic pressure [Kg/cm2], f  is the acoustic wave 
frequency [KHz], and fT is the relaxation frequency [KHz] that is: 

XY � ADGZ I DJV�9[/# �YP/\K�]        (12) 
where T is the temperature [°C]. if the temperature varies 
between 0° and 30°, then fT varies between 59 e 210 KHz. 
At frequencies between 100 Hz and 3 kHz, � is usually computed 
through Thorp’s formula: 
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where f is the frequency of the sound wave [kHz]. 

Fig. 1. Absorption coefficient for different values of salinity and temperature. 

The sound attenuation at low frequencies is very small. In fact, at 
a frequency of 100 Hz the intensity of the sound wave reaches 
one-tenth of its initial value after more than 8000 Km. No other 
type of radiation can compete with the low-frequency sound 
waves to communicate over great distances in oceanic 
environment. Electromagnetic waves, including also those 
radiated by the most powerful laser, are almost completely 
absorbed at distances less than 1 Km. The values of salinity, 
temperature and depth affect the absorption coefficient � and 
thus the maximum distance of propagation. Fig. 1 shows the 
trend of � as a function of frequency for different values of 
salinity and temperature. We can see that the absorption 
coefficient is strongly influenced by salinity. At frequencies 
above 200 kHz an increase of 5 ppm of salinity causes an 

increase of over 10 dB/km in the attenuation coefficient, which 
however, increases for all frequency values with increasing 
salinity. On the other hand, the temperature has a very little 
impact on the value of �. Furthermore, there is not a direct 
relationship between temperature and attenuation coefficient, but 
rather, to below 200 kHz an increase in temperature causes a 
decrease in the absorption coefficient while above this threshold, 
the reverse is true. To obtain the value of the loss factor, the 
coefficient of absorption, expressed in dB/km, must be returned 
to its natural value. On the basis of this attenuation coefficient, it 
can be calculated a factor of sound pressure loss at distance D 
from the source along a ray in this way: 

5M�7� � DJ�!�: 9###] �^$ /#]        (14) 

Fig. 2. Reflection coefficient as a function of frequency. 

Fig. 3. Loss factor for reflection as a function of the angle of incidence. 

B. Depth and Shallow Reflections 
When a sound wave propagated in the ocean impacts on a 

rough surface, it creates a reflected field in which there are 
coherent and incoherent components. The coherent component is 
a wave that is propagated in the direction of specular reflection. 
The sound wave impacting on a rough surface (i.e. sea surface or 
seabed) is not totally reflected, in fact a portion is lost: the 
incoherent component of the reflected field takes into account 
this effect. Therefore, the reflection coefficient is less than unity 
and decrease with increasing mean square of the height of the 
imperfections on the surface .The value of � can be calculated 
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from the spectral density of the provision o
density is often modeled by the Neum
spectrum. According to this model the 
approximated as: 
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penetrates the soil and this is a major re
propagation distance of sound at low frequ
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the seabed have been studied in a rather com
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The seabed unlike the surface, does not b
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of incidence of the ray on the seabed and it is
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where � and c represent, respectively the d
sound in seawater, whereas �1 and c1 represe
speed in the seabed. So, in order to calc
coefficient for the ocean floor, we must 
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D. Multipath channel model 
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