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Abstract. Nowadays, mobile service requests in wireless 

networking are aimed to the benefit of a good level of 

satisfaction for the received Quality of Service (QoS) 

guarantees. In this paper, a new prediction algorithm is 

proposed, for the pre-reservation of passive bandwidth, 

when mobile users moves under a radio coverage that 

can be considered as a cellular one (GSM, UMTS, WLAN 

clusters, etc.). The Hidden Markov Chains (HMC) theory 

is used to design the predictor, as the main component of 

the proposed idea, that does not depend on the 

considered transmission technology, mobility model or 

vehicular scenario. Mobile ReSerVation Protocol 

(MRSVP) has been used in order to realize the 

active/passive bandwidth reservation in the considered 

network topology. Different simulation campaigns have 

been carried out in order to appreciate the benefits of the 

proposed idea. 
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1. Introduction  

In this paper we considered QoS issues of mobile 

communications in wireless networks. Mobility 

Independent Predictive users [1] are considered and their 

service requests can be considered as non-tolerant: low 

call-dropping probability, service continuity and low 

delay-jitter must be guaranteed. At the best of our 

knowledge, a good way to avoid service degradations 

during hand-over events is represented by passive-

reservations [1], [2], [11]: that is to say, when a mobile 

user makes a service request on the current coverage cell, 

the admission control should ensure bandwidth 

availability on all the cells that the mobile hosts will 

probably visit during its session. The MRSVP is able to 

guarantee the right communication among the interested 

coverage cells, while the predictor is mandatory in order 

to know exactly which are the cells where the mobile host 

will hand-in. The mobility model has a heavy impact on 

the obtained results: in this paper we employed the 

Smooth Random Mobility Model (SRMM) [3] as well as 

the C4R mobility generator [4], in order to appreciate 

prediction performance when mobility traces are 

synthesized or extracted from real roadmaps.  and they 

can be unrealistic if the model is not appropriate. As 

earlier stated, the proposed technique is of general 

application and does not depend on the specific coverage 

technology: combining MRSVP and HMC as described 

in the following, a new prediction scheme is proposed 

and its performance are stated through a deep campaign 

of simulations. The paper is organized as follows: section 

2 gives a deep overview of the Mobile ReSerVation 

Protocol and the basics of Hidden Markov Chains theory, 

section 3 proposes the new prediction scheme, section 4 

shows simulations results and section 5 concludes the 

paper. 

2. Mobile RSVP and System Model 

The RSVP is used on other network platforms in order to 

allow bandwidth reservation to system terminal. It has 

been extended several times in order to accommodate 

different needing: for example, the Aggregate-RSVP has 

been implemented, in order to manage reservations in 

hybrid platforms such as satellite/terrestrial operating 

with two different QoS architectures [13]. Again, in order 

to handle users mobility and to offer guaranteed services 

(independent from mobility) the ReSerVation Protocol 

has been extended with the MRSVP [1]; in this way, the 

hand-off events can be managed in an adequate manner 

and the mobile users can make reservation requests over 

more than one cell, by their proxy agents: there are local 

proxy agents (which handle the active reservations) and 

remote proxy agents (which deal with passive 

reservations). An active reservation is made by a user 

only on the current access point, while passive 

reservations are made only on the remote cells that the 

user will visit during its connection (users belonging to 

Mobility Independent Predictive, MIP, class requests 
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passive reservations). A MRSVP connection starts with a 

proxy-discovery protocol phase, with which the user can 

know the addresses of its remote agents; then a resource 

request can be made, which will reach the net sender, in 

order to begin data packets transmission. After the proxy 

addresses are discovered, users send active_RESV 

messages to their local access points and passive_RESV 

messages to their remote access points, so the system 

must effect an admission control, in order to accept or 

refuse users’ requests. When a user moves from a 

coverage area to another one, the hand-off event is 

managed by a reservation switch: the reserved resources 

in the old access point are released and the passive 

resources can be assigned by switching to an active 

reservation. For more details about MRSVP see [1]. 

Figure 1 describes the MIP active and passive 

reservations (on the current cell and on the passive ones) 

in a simplified 1D scenario, hypothesizing that the user 

knows the cells that he will visit during its active 

connection; this information is carried out by the MRSVP 

through the exchange of the MSPEC message [1], but the 

use of a prediction algorithm is necessary, when users 

move among a two-dimensional (2D) set of cells. Dotted 

lines in Fig. 1 represent passive reservation requests. 

 

 

 

 

 

Fig. 1: An example of passive reservation. 

 As earlier described, in this work the MRSVP has 

been integrated with the HMC, because the 

passive_RESV messages have to be sent only to the 

remote cells that a mobile host will probably visit: each 

intermediate coverage cell has to know which is the 

neighboring cell where the mobile host will hand-in. The 

HMC is a statistical model used for modeling generative 

sequences that can be characterized by an underlying 

process generating an observable sequence.  Formally, a 

HMC can be described by a triplet λλλλ as follows: 

                 .          (1) 

 Defining S as the set of possible states 

S={s1,s2,…,sN}, with ||S||=N and V as the observations set 

V={v1,v2,…, vM} with ||V||=M, then a finite state 

sequence Q=q1, q2, …, qT and a corresponding 

observation sequence O=o1, o2, …, oT can be defined, 

with ||Q||=||O||=T. The first term in eq.1 is a transition 

array, which stores the probability of state j following 

state i, independent from time: 

                            .    (2) 

 The second term is the observation array, storing 

the probability of observation k being produced from the 

state j, independent of t: 

B = [bj�k�], bj�k� = P�ot = vk|qt = sj�      (3) 

and π is the initial probability array: 

         .       (4) 

 In addition to the Markov chain dependence 

property, for the HMC there is another assumption for the 

model, for which the output observation at time t is 

dependent only on the current state and it is independent 

of previous observations and states: 

.    (5) 

 In this paper, a HMC is used by each coverage cell 

to forward passive_RESV messages to the predicted 

neighboring cell. Details about learning, evaluation and 

decoding can be found in [5],[6]. Now, a brief description 

of the considered system is given, then the application of 

a particular HMM to the cellular network is introduced 

3. HMC Integration and Proposed 

Algorithm 

Let C be the set of coverage cells of the considered 

wireless network, C={c1,c2,…,cc} with ||C||=c, then for 

each cell ci ∈ C, with a coverage radius cri, a set of 

neighbouring cells Adj(ci) can be defined, on the basis of 

network topology and cell adjacencies. A generic 

coverage cell, generally with a circular shape, can be 

approximated with a n-edge regular polygon as depicted 

in Fig. 2 (n can be considered as an input control 

parameter): 

 

 

 

 

Fig. 2: Possible area approximation with regular polygons. 

 A set Sho of n possible movement directions can be 

then obtained: let us indicate them with d1...dn, where 

dj=θ*(2j-1)/2 rad., θ=2π/n rad. and j=1..n, so Sho={d1, 

..., dn} and ||Sho||=n. In the classical approaches on 

cellular networks [7], n is set to 6, so in this work 

||Adj(ci)||=||Sho||=6, ∀ ci ∈ C. Let us suppose that each 

cell ci ∈ C has the availability of L bandwidth channels 

and each user occupies one channel in the current ci: that 

is to say that the maximum number of active users in a 

cell is L. Our attention is not focused neither on the Call 

Admission Control (CAC) nor on the Bandwidth 

Reallocation Scheme (BRS) of the system, but only on 

the prediction of next neighbouring cells, through a 

HMC. So, we considered the simplest implementations, 

which provides that each mobile user will receive the 

same bandwidth level, related to the assigned channel on 
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the cell, for the entire flow duration and a cell can 

accommodate an bandwidth request only if lci<L, where 

lci is the number of currently occupied bandwidth 

channels on cell ci. In addition, the number of predicted 

hand-over events nho can be evaluated and users mobility 

has been considered through [4]. In fact, in [2], [15], after 

many stochastic analyses, we demonstrated that the time 

spent by a mobile host in a cell (Cell Stay Time - CST) 

can be approximated by a Gaussian distribution. So the 

general expression of the CST p.d.f. is: 

                ,     (6) 

 where ( )RvCST ,µµ =  and ( )RvCST ,σσ =  are 

respectively the average and standard deviation of the 

Gaussian distribution, R represents the coverage radius 

and v the average host speed; thus it is possible to 

evaluate the error of considered C.S.T. and to make a cell 

stay time prediction based on confidence intervals and 

confidence levels, considering the worst case Cell Outage 

Probability (COP). It is possible to select a cell stay time 

TCST for a mobile host so that Prob(X< TCST) <1-COP, 

where X is normally distributed. TCST is called a (1-

COP)*100% upper confidence bound for X. If the 

average Call Holding Time (CHT) TCHT is known, it is 

possible to consider the term NPC (Number of Predicted 

Cells) as follows: 

.     (7) 

 So it is possible to use the NPC value to make the 

pre-reservation of MIP flows, for nho=NPC-1 times, in 

order to leave more bandwidth availability in the not 

visited cells for new MIP flows. At this point, in the 

PASSIVE_RESV message an additional field “res_ho”, 
indicating the number of residual predicted hand-over 

events, can be added and the active cell (where the call 

has originated) can evaluate NPC as in eq.7. Then, if 

nho≥2 (at least 1 hand-over events have been predicted), 

the active cell prepares a PASSIVE_RESV packet to be 

forwarded to the predicted neighbour by setting 

res_ho=nho-1. Figure 3 illustrates the behaviour of ci 

when a service request is received:  

 

 

 

 

 

 

 

 

Fig. 3: Cell behaviour after the receipt of a reservation request. 

 As defined in [1], when a cell receives a resource 

request, it has to perform the CAC: in the considered case 

it only verifies if lci<L. If there are no available channels 

(lci=L), then the request cannot be accepted and a 

RESV_NACK message is sent toward mobile host. If a 

channel can be assigned and ci is the last predicted cell 

(res_ho==0), it only has to send a positive RESV_CONF 

message toward mobile host. On the other hand, if more 

hand-over events have been predicted (res_ho≠0) for the 

considered mobile host, the cell uses a HMC predictor to 

know which is the neighbouring cell to forward a 

passive_RESV message to, after the res_ho value has 

been decreased by 1; at the same time, the cell sends a 

RESV_CONF toward the mobile host. At this point, the 

active cell knows the bandwidth availability on the 

predicted path for the mobile host, if no RESV_NACK 

messages have been received. Now the HMC system 

modeling is described. Hidden Markov Model is used in 

many fields of research [6], like automatic control, 

artificial intelligence, finance and biology. We 

hypothesize that, in the considered wireless cellular 

system, mobility management is performed by coverage 

cells. So what mobility prediction concerns is just user’s 

path from entering the covering area of a cell to leaving. 

In this work two modeling schemes are considered. 

3.1. Centralized HMC Model (CHMC) 

In this case a single HMC is considered for the whole 

system. A graph G=<V,E> is associated to the cellular 

network, where V is the set of vertices and E is the set of 

edges. Each vertex vi∈V represents a coverage cell ci∈C, 

then ||V||=||C||=c. The set E contains the edges that can 

be considered as the neighboring relationships of cells: 

         .(8) 

 At this point we considered the obtained graph as 

the state transition map of the HMC. 

 

 

 

 

 

 

 

Fig. 4: System modeling for the centralized case with c=24. 

 Figure 4 illustrates an example of  mapping 

between a cellular system with c=24 and its related graph 

G. As it can be seen, we considered a HMC with states si 

associated to vertices vi, so ||S||=||V||=||C||=N=c. In the 
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centralized model, the entire path followed by a mobile 

node is considered as a sequence of cells and the issue of 

mobility prediction can be considered as a problem 

related to stochastic processes. For example, if a mobile 

host hands-over from cell c1 to cell c5, then a state 

transition from s1 to s5 has occurred. 

 

3.2. Distributed HMC Model (DHMC) 

In the second case, each cell does not have knowledge of 

the whole system. A dedicated HMC, as illustrated in Fig. 

5, is associated to each cell. In this case the HMC for a 

generic cell ci∈C has a number of states equal to 

n=||Sho||, that is to say each state is associated to a 

possible hand-off direction. In this case, for example, a 

state transition from s1 to s5 occurs if a mobile host enters 

the cell from d1 and hands-out to d5.  

 

 

 

 

 

Fig. 5: HMC structure for the distributed case with N=n=6. 

 

3.3. HMC learning, prediction and 

utilization 

Based on classic theory on HMC and Baum-Welch 

algorithm [8], λλλλ has to be determined, because it 

represents the triplet that defines the model for both 

schemes (CHMC and DHMC). Because observations of 

mobile hosts movements are possible (in our case by a 

system simulator, as explained in next section), 

supervised training can be approached, because HMC 

inputs and desired outputs are known. Training 

observations consist in a set of mobile host paths and 

hand-over direction sequences for CHMC and DHMC 

respectively. Having a high number of training 

observations of mobile hosts paths and directions, the 

Maximum Likelihood Estimates (MLE) can be used for 

the evaluation of A, B and � as follows: 

               ,                  (9) 

 

                 ,                (10) 

 

       ,  (11) 

 where, TR(si,sj) is the number of observed 

transitions from state i to state j and N(si) is the number of 

transitions from state si to any other state. For the CHMC, 

a transition from si to sj occurs when, in the training data, 

a mobile host hands-over from cell ci to cell cj, while for 

the DHMC it occurs when a mobile host hands-in a cell 

from direction di and hands-out to direction dj. The term 

OCC(vk,si) in eq. 10 represents the number of occurrences 

of state si in the observations vk. For the CHMC, state si 

occurs in the observation vk if cell ci is contained in the k-

th path of the training data, while for the DHMC it occurs 

if the direction di is contained in the k-th hand-over 

sequence of the training data. The term in eq. 11 

represents the probability that state si (coverage cell ci or 

hand-over direction di) is the first observed state (q1) in 

the training observations and it is evaluated as the ratio 

between the number of occurrences of si being the first 

observed state OCC(q1=si) and the number of total 

observations of first states N(q1). So, λλλλ can be evaluated 

through a supervised training.  

 At this point, given the HMC model expressed 

through the triplet λλλλ, we need to evaluate P(O|λ), that is 

to say the probability of  the observation sequence O 

given the model λλλλ. The probability of O for a specific 

state sequence Q can be expressed as: 

                  ,   (12) 

 and the probability of the state sequence is: 

                ,                 (13) 

so: 

 

                  .  (14) 

 

 If the forward-backward algorithm is introduced to 

evaluate the expression of eq.14, the complexity is 

reduced from 2TN
T
 to N

2
T [5],[8].  

 In the centralized case, the state associated to the 

cell where the mobile host has made its service request 

becomes the current state of the CHMC, so the current 

state is known. When the mobile user sends the 

ACTIVE_RESV, the current cell consults the centralized 

and shared CHMC model, starting the prediction of states 

(cells) sequence through the evaluation of P(O/λ) by eq. 

14. In the distributed case the current state is represented 

by the hand-in direction di, and the DHMC is consulted 

by its own coverage cell in order to know the predicted 

hand-out direction (in this case, for the first prediction the 

hand-in direction is substituted by mobile host born 

sector, where the call originated; sectors subdivision is 

illustrated in Fig. 5). 

4. HMC Integration and Proposed 

Algorithm 

Many simulations have been carried out in order to 

evaluate the performances of the proposed idea in terms 

of average prediction error, channel assignments, call 
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dropping probability and call blocking probability. The 

considered scenario consists of a set of cell clusters, for a 

total of c=35 coverage cells, depicted in Fig. 6 where, for 

example, real paths of Calabria’s east-coast (south Italy) 

have been considered through the C4R mobility simulator 

[4] with a 900x900 m
2
 map. All the cells have the same 

coverage radius cri=r, ∀ i ∈ C and an exponentially 

distributed CHT with mean λ=180s has been considered. 

In the simulation scenario, each coverage cell offers L=20 

channels and it is connected, by a switching subnet, to the 

net-sender. Border effects on mobility are neglected by 

ignoring mobile trajectories with paths outside the 

coverage set. Simulation time has been set to 3000s for 

each run. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Simulation map with c=35, cri=160m and L=20. 

 A first campaign of simulations has been carried 

out in order to obtain the appropriate training data for 

CHMC and DHMC models. In particular, the proper size 

of the training set has been investigated and Fig. 7 shows 

the trend of the prediction accuracy for different number 

of observations. Due to space limitations only the curves 

for cri=160m are shown; in the other cases the trend is 

very similar. 

 

 

 

 

 

 

 

 

Fig. 7: Prediction accuracy for CHMC and DHMC for different training 

set dimensions (100, 200 and 300). 

 Prediction accuracy is evaluated as the ratio 

between the number of correctly predicted hand-over 

observations and the number of total observations: for the 

CHMC the correctness of prediction is evaluated on all 

the visited cells in the considered paths, while for the 

DHMC it is evaluated on all the observed hand-out 

directions. From Fig. 7 it is evident how the distributed 

scheme outperforms the centralized one, because each 

coverage cell has its own HMC and the training is made 

only on the possible hand-out directions that belong to 

the specific coverage. In addition, the dimension of the 

training data have to be carefully chosen, in order to 

avoid over-fitting phenomena [9],[10]. In our case, a 

training set of 200 items brings the predictor to 

acceptable performance in terms of prediction accuracy. 

 

 

 

 

 

 

 

 

Fig. 8: Average channels utilization. 

 Figure 8 depicts the trend of the average channels 

utilization of the whole wireless system for different MIP 

traffic percentages: it represents the ratio between the 

number of channels assigned to MIP active calls and the 

total number of channels of the system 

(c*L=35*20=700). Different percentages of MIP traffic 

have been considered with different values of cell radius 

r, with a best-effort complementary traffic (no passive 

reservations are made for this kind of traffic). When MIP 

traffic increases, more passive reservations are made into 

the system, so a higher number of channels are, in-

advance, reserved for the arriving mobile hosts. In this 

way a bandwidth wastage is introduced and channels 

utilization falls below 70%. No big differences are 

evident among the proposed schemes (the maximum gap 

is around 5%). For larger radio coverage, channels 

utilization decreases due to higher quantity of mobile 

hosts which have to be served, with a consequent 

increasing of passive reservations. 

 

 

 

 

 

 

 

 

Fig. 9: Call Dropping Probability for different MIP traffic percentage 

and coverage radius. 

 The Call Dropping Probability has been depicted 

in Fig. 9: it does not depend on MIP traffic percentage 
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and the distributed scheme performs better than the 

centralized one; for lower values of r, the DHMC makes 

the CDP to be below 6%. Anyway, the DHMC 

outperforms the CHMC scheme because the CDP is 

maintained below 10%. 

 

 

 

 

 

 

 

 

Fig. 10: Call Blocking Probability for different MIP traffic percentage 

and coverage radius. 

 Also for the CBP, the DHMC outperforms the 

centralized scheme as shown in Fig. 10. Higher 

percentages of MIP traffic lead the system to have more 

passive reservation requests with the same channels 

availability, so the call admission control denies the 

access more frequently; for the same reason the trend is 

also increasing for larger r. 

5. Conclusion 

In this work a new prediction scheme is proposed for 

wireless cellular networks. It is based on Hidden Markov 

Chains (HMC) processes and aims to the guarantee of 

service continuity in QoS networks. Two schemes have 

been proposed, based on a centralized and distributed 

HMC approach, in order to predict user movements 

among a coverage system and to make possible an 

adequate reservation of passive resources. The proposed 

idea has been validated through some deep simulation 

campaigns and the Distributed-HMC (DHMC) model has 

shown good results in terms of Prediction accuracy, CDP 

and CBP. 
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