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Abstract— In last years, wireless networking is becoming very 

popular because it is able to satisfy user requests in terms of 

Quality of Service (QoS); when mobility is present, perhaps, 

hand-over issues are relevant when hosts change coverage areas 

during their active sessions. It is very important to mitigate 

mobility effects, employing an appropriate bandwidth 

management policy. In our work, we propose two integrated 

schemes: the first one is based on Markov theory and is aimed at 

the prediction of mobile hosts movements (in terms of future 

cells), while the second one is based on statistical theory and is 

aimed at the minimization of the wasted bandwidth used for 

passive reservations. So, the proposed Pattern Prediction and 

Passive Bandwidth Management Algorithm (3P-BMA) is the 

result of the integration of the Markov predictor and the 

statistical bandwidth management scheme. 3P-BMA is 

completely independent on the considered technology, mobility 

model and vehicular environment. We do not care if the coverage 

is made by UMTS or WLAN technologies, if hosts are 

pedestrians or mobile users, etc. Some campaigns of simulation 

have been led-out in order to confirm the effectiveness of the 

proposed idea in terms of prediction accuracy, Call 

Dropping/Blocking probabilities and system utilization. 
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I.  INTRODUCTION 

In wireless networking, available communication protocols 
give only one way to ensure QoS and service continuity to 
mobile users: making a bandwidth reservation over all the 
cells that a MH will visit during its active connection. For 
example, the Mobile ReSerVation Protocol (MRSVP) can be 
used to make passive requests [1], but a prediction scheme is 
mandatory, in order to know which coverage cells a user will 
probably visit during its call Call Holding Time (CHT). In this 
work, we are considering infrastructured networks, where a 
communication is not possible in a direct way among nodes, 
unlike ad-hoc architectures (Vehicular, Delay Tolerant and 
Mobile networks) where, for example, energy consumption 
issues maybe not trivial [2], [3]. Generally, Mobile Hosts 
(MH), when dealing with wireless networks, experience some 
service disruptions for the suffered congestion level, that is 
variable from a coverage area to another one: each coverage 

cell manages its connections independently of neighbour 
conditions. Mobility prediction and early bandwidth 
reservations are used to guarantee service continuity when 
mobile hosts are moving among different coverage cells, but 
passive reservations lead the system to waste bandwidth 
resources since they are not used until the mobile host enters 
the considered cell. In this work a new mobility prediction 
scheme based on Distributed Markov Chains (DMCs) is 
proposed in order to handle passive reservation and a statistical 
algorithm, based on the analysis of the Cell Stay Time (CST) 
distribution, is introduced for reducing bandwidth wastage. The 
Pattern Prediction and Passive Bandwidth Management 
Algorithm (PPP-BMA or 3P-BMA) is the result of the 
integration of the predictor and the bandwidth management 
scheme. While the cell prediction algorithm is based on the 
Markov theory and it is aimed at discovering the probably 
visited future coverage cells, the MRSVP pre-reservation 
phase is enhanced introducing the time prediction of passive 
reservations, in order to avoid leaving it unused until the MH 
enters the considered cell. We employed the Citymob for 
Roadmaps (C4R) mobility generator [4], in order to appreciate 
prediction performance when mobility traces are extracted 
from real roadmaps. 3P-BMA is completely general and does 
not depend neither on the specific coverage technology, nor on 
the adopted signaling protocol: the cellular system does not 
care if MHs are using GSM or WLAN, or if they are in a free-
space or urban environment. 3P-BMA is distributed and it has 
been tested through some deep campaigns of simulations. In 
this paper, section II gives a good overview of the existing 
related work,  section III proposes the new prediction scheme 
and section IV shows simulations results. Conclusions are 
summarized in Section V. 

II. STATE OF THE ART AND CONTRIBUTIONS 

Many efforts have been published in last years about 
prediction schemes and mobility analysis for QoS networks; 
passive resource management is critical for providing service 
guarantees in wireless networking. Two passive reservation 
techniques are proposed in [6], exploiting Wiener prediction 
and time series theory, making in-advance reservations under 
non-Poisson and/or non stationary arrival processes, arbitrary 
distributed call and channel holding time and arbitrary per-call 
resource demands. In [5] authors optimize system parameters 



in terms of Call Dropping Probabilities (CDP) and Call 
Blocking Probabilities (CBP) introducing a prediction 
algorithm based on data mining approaches, in order to 
implement a distributed Call Admission Control (CAC) 
scheme, considering also the throttle flag as indication of the 
usage of each cell. The authors of [7] propose a new 
framework to estimate service patterns and to track mobile 
users, basing the decisions on historical records and predictive 
patterns of mobile users allowing the estimation of next cells 
into which a mobile user will possibly move. In [8] the authors 
give a contribution in WLAN infrastructure planning, basing 
their decisions on mobility prediction: they propose a new 
method for feature extraction with a novel neural network 
classifier based on a hidden genetic algorithm, reaching an 
acceptable prediction accuracy. In this paper we also 
demonstrate how the introduction of a certain grade of 
bandwidth reusability leads to an increasing of system 
performance, especially in terms of channels utilization. In our 
previous works, like [9] and [10], a prediction technique based 
on the CST evaluation of a mobile user is proposed. A formula 
that relates cell coverage radius and speed is calculated and 
resource reservation techniques have been proposed, so it is 
possible to evaluate the number of coverage cells that users 
will visit during their CHT. 

The majority of prediction schemes are aimed at the 
prediction of a single cell only, without introducing the 
concept of bandwidth reuse. In this work, instead, a distributed 
prediction approach is proposed, with an integrated time 
multiplexing scheme; in particular, the main contributions are:  
a) Reservation protocol integration with Markov chains, in 

order to realize a complete prediction scheme; 
b) Distributed model employment (each coverage cell uses a 

particular Markov chain in order to describe and predict 
local host movements), in order to improve system 
utilization; 

c) Multiplexing of passive reservations, by which the in-
advance reserved amount of bandwidth in a cell can be 
reused by active MHs, leading to a reduction of the total 
resource wastage; 

d) Model training by taking into account local trajectories 
(each predictor is specialized for the specific coverage 
area, with different traffic densities).  

III. THE PATTERN PREDICTION AND PASSIVE BANDWIDTH 

MANAGEMENT ALGORITHM 

This section gives a complete description of the proposed 
idea. Firstly, the way the signaling protocol is used to make 
CAC and passive reservations is illustrated, then the derivation 
of the complete model is shown, as well as the integration 
with DMCs. It must be outlined that the proposed idea does 
not depend on the employed protocol: for example, it can be 
one of those described in [1], [11], [20]. We chosen the 
MRSVP [1], with which one reservation is made by a user on 
the current coverage cell (active reservation), while passive 
ones are made on the predicted remote cells. 

 
A) The distributed markovian prediction scheme 
We considered a cellular system that is composed by a set 

of coverage cells C={cl}, with ||C||=c, 1<l<c and a coverage 
radius rl. Each of them has an associated Distributed 

Bandwidth Predictor DBPl, composed by an appropriate semi-
Markovian model, as described in the following. As shown in 
our previous works ([10], [13]), a set Sho of n possible 
movement directions can be obtained if the coverage area is 
approximated with a n-edge regular polygon (fig.1). The 
directions can be indicated with d1...dn, so Sho={d1, ..., dn} and 
||Sho||=n. In the classical approaches on cellular networks n is 
set to 6. The MRSVP session starts with the active service 
request performed by a MH u on its active cell cl; if there are 
no free channels in cl, the call is refused (with a RESV_NACK 
message), else the cell cl applies the results obtained in [1],[9] 
to evaluate the number of predicted hand-over events NHO. If 
no hand-over events are predicted (the CST>>CHT), then the 
call is accepted (u will visit only the current cell cl), else the 

DBPl is used to predict the neighbor cell nc∈Adj(cl), where 

Adj(cl) is the set of neighbors of cell cl∈C and ||Adj(cl)||=n, 
where n is the number of possible hand-over directions.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Coverage cell approximation (a), transition diagram of the related 
Markov chain (b) and (c) system modeling with (c=7 and n=6). 

The DBPl is represented by a finite set of states and 
transitions among the states are governed by a set of transition 
probabilities. The proposed model, illustrated in fig. 1, 
associates one state of the chain to one hand-over direction. 
So, once the set of possible states S={s1,s2,…,sn} and a finite 
state sequence Q=q1, q2, …, qm, with ||S||=n and ||Q||=m (m is 
the length of the observation sequence) are defined, three key 
elements can be defined: 

a) A set of state transition probabilities ΛΛΛΛ: 

                                  (1) 

where qt represents the current state and: 
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b) The initial probability array ππππ: 

                                  (3)  

c) The state sojourn times array ST: 

                        (4) 

where fi(t) is the pdf associated to state si sojourn time. 

Once the parameters in equations (1), (3) and (4) are 
defined, we can write that the l-th DBP can be completely 
described as follows by a triplet: 

                      (5) 

At this point, the obtained graph can be considered as the 

state transition map of the HFSMC. Figure 1c illustrates how a 

distributed set of DBPs D={DBPl, 1≤l≤c} can be used to 

model the whole cellular system. Supervised training can be 

approached because observations of MHs movements are 

possible (in our case by a detailed system simulator, as 

explained in next sections) and DBPl inputs and desired 

outputs are known. Training observations consist in a set of 

hand-over direction sequences. 

The Maximum Likelihood Estimates (MLE) can be used 

for evaluating of ΛΛΛΛl, ����l and STl as follows: 

          (6) 

 

where clnji ≤≤≤≤ 1,,1 , TRl(si,sj) is the number of 

observed transitions from state i to state j in cell cl (a transition 

from si to sj occurs when, in the training data, a MH hands-in a 

cell from direction di and hands-out to direction dj), Nl(si) is 

the number of transitions from state si to any other state in cell 

t, πti represents the probability that state si (hand-over direction 

di) is the first observed state (q1) in the training observations 

for cell t and it is calculated as the ratio between the number of 

occurrences of si being the first observed state FIRSTt(q1=si) 

and the number of total observations of first states Nt(q1). For 

the state sojourn times array ST, it must be noticed that, in the 

proposed model, the time elapsed from the hand-in on 

direction di to the hand-out on direction dj in a given cell cl 

matches with the CST of the same cell, so we can write that 

the pdfs of CSTli and tli are the same. In addition, CSTli is 

independent on the hand-in and hand-out directions, so 

CSTli=tli=CSTl=tl ∀cl ∈ C. Details about learning and 

evaluation can be found in [15], [16]. It is clear that, before the 

prediction algorithm takes place, each DBPl belonging to cell 

cl ∈ C needs to be trained, so the terms expressed in eq.(6) can 

be evaluated by observing MHs movements (in our case we 

carried out a campaign of simulations, observing MH 

behaviors from the traces generated by [4]). 
 

B) The statistical bandwidth management 
Another important contribution of the proposed work is the 

passive resource multiplexing: when a MH pre-reserves a 
certain amount of passive bandwidth in the remote coverage 

cells, it may be considered as available resource when other 
incoming traffic makes service request into the system. As 
discussed in early works ([1], [9]), the pdf of the average time 

spent by a user in the coverage cell cl∈C can be approximated 

by a Gaussian function pdfCSTl=Nl(µl,σl). Let us indicate with 
hoin(h) and hoout(h) the predicted hand-in and hand-out times 
to/from a cell respectively for the h-th hand-off event. It can 
be written that: 

         (7) 

where l is the predicted identifier of the cell that will be 

probably visited on the (h+1)-th hand-off and lho is a 

realization of Nl(µl,σl). Generalizing eq.(7), it can be written 
that: 

         (8) 

where holm is a pdf realization for the predicted cell clm for 

the m-th hand-off and τin(0) is assumed to be the time at which 
the call has originated. As stated in [17], hoin(.) is still a 

random variable, because if Γ is a random variable then 

pdf(Γ)=pdf(a+Γ) with a ∈ R, then  pdfho(h+1)=pdfho 

(h)=...=pdfho (1), so: 

               (9) 

 

 

 

Let us hypothesize that each coverage cell cl∈C has a total 
channel capacity Bl. Without loss of generality, we can write 

that Bl=B, ∀cl ∈C. Each passive request has a predicted hand-
in time and a predicted  hand-out time, as derived in eq. (8), 
indicated with hoin-m(h) and hoout-m(h) respectively, where h 
indicates that the bandwidth reservation of duration hoout-m(h) -
hoin-m(h) is made for the h-th hand-off of the m-th call. If x-th 
and y-th requests have no time intersections between their 
passive reservations in the considered cell, then the same 

channel can be used, so reqx∩reqy=∅ if: 

    (hoout-x(j)< hoin-y(k))||( hoin-x(j)> hoout-y(k)),        (10) 

where j,k are the hand-off indexes for x and y respectively. 

In other words, reqx∩reqy=∅ if call_x’s reservation ends 
before req_y’s one starts or after req_y has finished in the 
current cell.  

 

 
 

 

 

 

 

 

 

 

Fig. 3. An example of a refused passive request (a) and an accepted one (b). 
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 Figure 3 illustrates an example of time multiplexing: in 
the upper case (case a), passive reqm cannot be accommodated 

in the channel chi because reqm∩req2≠∅ and reqm∩reqj≠∅; in 

the lower case reqm∩reqk≠∅ with k=1,2,j,j+1, so the passive 
request can be accepted on channel i. The multiplexing 
scheme has to optimize the passive bandwidth utilization and 
the fairness criterion should be respected among the available 
channels. An appropriate allocation policy must be considered, 
so the following index, called bandwidth_fairness_index, (bfi), 
can be defined: 

              (11) 

where ∆hox_chi= hoout-x(.)-hoin-x(.) is a passive reservation of 
reqx belonging to channel i (chi) and Tchi=maxx(hoout-x(.))-
minx(hoin-x(.)) is the total predicted period  of reservation for 
channel chi. It gives an idea of the percentage of time that the 
considered channel will be occupied. The proposed algorithm 

tries to obtain bfi(chi)≅bfi(chj), introducing the needed fairness 
condition. When a new passive request reqx arrives to the cell 
cl, candidate channels are sorted in increasing order of mux-
gap, then the multiplexing algorithm tries to insert reqx into 
the first “available” channel, in increasing order of bfi. If the 
condition illustrated in eq.(10) is not satisfied for any channel, 
reqx will be rejected. 

 

IV. PERFORMANCE EVALUATION 

Different campaigns of simulations have been led out in 
order to evaluate 3P-BMA performance in terms of average 
prediction error, channel assignments, call dropping probability 
and call blocking probability. The considered scenario consists 
of a set of c=35 coverage cells, depicted in fig. 4 where, for 
example, real paths of two down-towns Toulon (France) and 
Barcelona (Spain) have been considered through the C4R [4] 
with a 950m x 950m map.  

 

 

 

 

 

 

Fig. 4. Simulation maps with c=35, r=150m and B=30. 

 Curves are shown for different values of training set 
dimension (from 50 to 300) and r has been set to 150m for 
space limitations. All the cells have the same coverage radius 

rl=r, ∀ cl ∈ C and an exponentially distributed CHT with mean 

λ=180s has been considered. In the simulation scenario, each 
coverage cell offers B=30. Border effects on mobility are 
neglected by ignoring mobile trajectories with paths outside the 
coverage set. Simulation time has been set to 2500s for each 
run. First of all, the DBPl models have to be trained, so a  first 
dedicated campaign of simulations has been carried out in 
order to obtain the appropriate training data. In particular, the 
proper size of the training set has been investigated and fig. 5 
shows the trend of the prediction accuracy for different number 

of observations. The parameter depicted in fig. 5 is evaluated 
as the ratio between the number of correctly predicted hand-
overs observations and the number of total observations: 
accuracy is evaluated on all the observed hand-out directions. 
From fig. 5 it is evident how good results are reached (from 
75% to 95%), because each coverage cell has its own HFSMC 
and the training is made only on the roads that belong to the 
specific cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Prediction accuracy or different training set dimensions (100, 200 
and 300) for Toulon (a) and Barcelona scenarios (b). 

 Training set dimension have to be carefully chosen, in 
order to avoid over-fitting phenomena [12],[19]. In our case, a 
training set of 200 items brings the predictor to acceptable 
performance in terms of prediction accuracy.  

 

 

 

 

 

 

 

Fig. 6. Call Dropping Probability for Toulon and Barcelona scenarios. 

Figure 6 depicts the average trend of the Call Dropping 
Probability (CDP) for different percentages of Non-Tolerant 
(NT) traffic (the ratio between the number of users that request 
QoS and the number of total requests). In addition, NT traffic 
have been considered with a best-effort complementary traffic 
(no passive reservations are made for this kind of traffic). As it 
can be seen, it does not strictly  depend on NT traffic 
percentage and its values belongs to the range [0.076, 0.137]. 
In both cases (with or without multiplexing) the values are 
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acceptable and no big differences can be observed among the 
considered scenarios. In fig. 7, the Call Blocking Probability 
(CBP) is illustrated: in all cases, for higher percentages of MIP 
traffic the system have to manage more passive reservation 
requests with the same channels availability, so the call 
admission control denies the access more frequently. The 
difference is evident when the multiplexing scheme is used: 
there is a gain in terms of admitted flows, because the system 
can accommodate more users, since the bandwidth availability 
for passive reservations is heavily increased (by channels time 
multiplexing). 

 

 

 

 

 

 

 

 

 

Fig. 7. Call Blocking Probability for Toulon and Barcelona scenarios. 
 

 

 

 

 

 

 

 

 

Fig. 8. Average channels utilization percentage for Toulon and Barcelona 
scenarios. 

Figure 8 illustrates the course of the average channels 
utilization of the whole cellular network: system channels 

utilization is evaluated as (Bla / B) ∀ cl ∈ C, where Bla is the 
number of channels used for active connections in cell cl. All 
the values are then averaged on the number of cells of the 
system (c=35 in the considered case). In both no-mux cases, 
where the multiplexing scheme is not employed), when NT 
traffic increases, more passive reservations are made into the 
system, so a higher number of channels are, in-advance, 
reserved for the arriving MHs. In this way a bandwidth 
wastage is introduced and channels utilization falls below 60%. 
When the available channels are dedicated to multiple passive 
reservations, system utilization increases drastically, obtaining 
a heavy enhancement of about 24%. 

V. CONCLUSIONS 

This paper aims at proposing a new Markovian prediction 
scheme for wireless cellular networks, with the benefits of an 

integrated policy for passive reservations multiplexing. It is 
based on Hidden Finite State Markov Chains (HFSMC) 
processes and guarantees service continuity in QoS networks, 
without disrupting system utilization performance. The idea is 
independent on the considered coverage technology (UMTS, 
WLAN, GSM) and it is of general application. The strength of 
the proposed idea resides in the integration of MRSVP, 
Markov predictor and Time Multiplexing, that leads to the 
MMP, which offers very good performance in terms of 
accuracy, utilization of the system and service continuity.  
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