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Abstract— This letter presents an analytical framework of the
Cell Stay Time (CST) in wireless LAN environment. CST is an
important parameter that can be used to estimate how long
a mobile user will stay in a particular cell and how many
cells he will probably visit during his call holding time. CST
can be also used to make predictive advanced reservations. A
probability density function p.d.f. of the CST is obtained and an
analytical expression of its main parameters such as the average
and standard deviation values is outlined as a function of the
average mobile user speed and cell radius.

Index Terms— Cell stay time, WLAN, random way point
mobility model.

I. INTRODUCTION

THIS letter describes an analytical framework to evaluate
the cell residential time called Cell Stay Time (CST) of

a mobile user in a Wireless LAN (WLAN) coverage area.
The cell residential time is an important parameter in wireless
networks because it permits the evaluation of how long a
user will stay in a cell during its call holding time and
how many cells he will visit. This can be useful in resource
reservations for an environment supporting node mobility [1].
In previous works, an idea of CST usage for reservations
in wireless networks is shown [2]. In these works an early
evaluation of CST under different speeds was considered and
a prediction of the number of cells visited by mobile nodes
was obtained [3]. However, no mathematical formula has
been obtained to calculate the CST through the knowledge of
network parameters such as mobile user speed and cell radius.
In this work a further contribution is made to CST evaluation
through an explicit math formula that binds the average speed
of the mobile user, the variance around the average speed and
the cell diameter to the CST estimation. This letter is organized
as follows: section II provides an analysis by simulation of the
CST in order to obtain a probability density function p.d.f.; a
polynomial regression is considered in section III in order to
bind the mean µ and the standard deviation σ of the CST with
the average speed, the variation α of the mobile hosts and the
cell radius; section IV carries out a performance evaluation of
the proposed model; finally, conclusions are summarized in
section V.

Fig. 1. An example of CST Gaussian distribution and its approximation for
ν̄ = 15Km/h and α = 0.

II. CELL STAY TIME ANALYSIS

In our work the Random Way Point model (RWPM) was
considered [4] as a method to describe users’ mobility and,
first of all, many simulations were carried out in order to
evaluate the average CST, with an average speed ν and a
variation coefficient α; in this way, the considered users’ speed
is uniformly distributed in the interval [ν −α; ν + α]. After a
results analysis, a CST distribution was obtained like the one
depicted in Fig. 1, with a Gaussian approximation for fixed
values of speed and variation. So, the general expression of
the CST p.d.f. is:

fXCST (x) =
1√
2πσ

e
−(x−µ)2

2σ2 (1)

where µ = µCST (ν, α,R) and σ = σCST (ν, α,R) are
respectively the average and standard deviation of the Gaus-
sian distribution. R represents the cell radius. In the next
section, analytical expressions for µ and σ are derived with
the application of the regression theory.

Fig. 1 shows how the CST distribution parameters change
for different α values; it can be observed that both µ and
σ increase for higher values of α, because of the higher
fluctuations of chosen speeds during hosts movements. The
Kolmogorov-Smirnov (KS) test [6] has been employed to
evaluate the correctness of a Gaussian approximation of the
CST distributions under the RWPM; table I summarizes the
obtained p-values for different values of α, with D=300 and
v=15Km/h.

The cumulative distribution function c.d.f. of the CST from
(1) is:
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∫ x
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dt = 1 − ε (2)

and through (2), the probability that CST is lower than a value
x with a fixed error threshold ε is obtained such as referred in
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TABLE I

VALUES OF µ AND σ OF CST DISTRIBUTIONS AND KS P-VALUES FOR

DIFFERENT MOBILITY PARAMETERS.

α µCST σCST KS p-value
0 68.39245 0.055022 0.5305
5 70.76407 0.128481 0.5087
15 70.9836 0.568966 0.6712
25 71.3662 0.829614 0.7012

[5]. Thus the knowledge of µCST and σCST is necessary to
obtain a good estimation of CST, depending on ν, α and R.

III. CST POLYNOMIAL REGRESSION IN THE 3-D SPACE

The regression analysis was performed under MATLAB
application and the minimum observed value of the determi-
nation coefficient R2 over all obtained polynomial functions
is 0.9898. The curves of the average µCST and σCST for
different system parameters values are shown in Fig. 2. Details
on polynomial regression technique can be found in [6].
Fig. 2a shows the relationship between µCST , the users’
average speed ν and system cells’ diameter D: maintaining
D at a constant value, the curve has a decreasing course for
increasing values of ν, because of the lower duration of the
users’ average permanence in a cell; moreover, as can be
expected, fixing a value for the users’ average speed v, the
average CST µCST always increases, for higher values of the
cell dimension; that is, a mobile host takes more time to fully
cross a coverage area. In Fig. 2b, fixing D, the σCST increases
for higher D values. Fig. 2c shows the relationship between
µCST , the users’ average speed v and its variation coefficient
α: maintaining α at a constant value, the curve decreases for
increasing values of ν, because of the same reason explained
previously; in addition, fixing a value for users’ average speed
ν, the average CST µCST increases slightly, for higher values
of α; that is because the chosen speed values can vary in
a larger range and the CST random variable has a higher
standard deviation σCST . On the other hand, Fig. 2d shows
that σ also increases for higher values of α, because the higher
probability of a speed change.

The general equation of the average of the CST is expressed
in (4) with a fourth order polynomial regression:

µCST (ν̄) = n4ν̄
4

+ n3ν̄
3

+ n2ν̄
2

+ n1ν̄ + n0 (3)

where ni = f(D,α) with i=0, 1, ..,5 and D=2R. Because
the ni terms follow a linear dependence on D, they can be
expressed as:

ni = aiD + bi (4)

µCST can be represented in the following way:

µCST (ν̄) = [n0, n1, ..., n4, ] ·
[
1, ν̄, ν̄

2
, ν̄

3
, ν̄

4
]T

= 〈n〉T · 〈ν̄〉n=4 (5)

where the notation 〈·〉 is used to represent a column vector
and 〈·〉T is the transpose operator applied to the vector. In
(6) 〈ν〉i =

[
1, ν̄, . . . , . . . , ν̄i

]
is a (i + 1)x1 vector. In order

to calculate the coefficient ni it is important to evaluate
coefficients ai and bi. After a second order regression between
ai and α, the following expression can be obtained:

ai = mi1α
2

+ mi2α + mi3 (6)

with i= 0, . . . , 5.

Fig. 2. Matlab Graphics: a) and c) 3-D plot of µCST ; b) and d) 3-D plot
of σCST

Considering another polynomial regression analysis (5-th
order in this case) on the bi coefficients for different α values
around the average speed of the mobile nodes, the expression
of the bi terms can be represented as follows:

bi = ci1α
5

+ ci2α
4

+ ci3α
3

+ ci4α
2

+ ci5α + ci6 (7)

with i= 0, . . . , 5.
Using a matrix notation, the terms ai can be calculated as

follows:
A = M · 〈α〉n=2 (8)

where A is a (5x1) vector, M is a (5x3) matrix and 〈α〉n=2

is a (3x1) vector. Terms bi, instead, are represented in the
following form:

B = C · 〈α〉n=5 (9)

where B is a (5x1) vector, C is a (5x6) matrix and 〈α〉n=5 is
a (6x1) vector. Thus, the final matrix expression of the CST
is the following:

A =
[(

M · 〈α〉n=2
)
· D + C · 〈α〉n=5

]
· 〈ν〉n=4 (10)

The coefficients of the matrixes M and C are expressed in Fig.
3 and Fig. 4. The same regression analysis was carried out for
the standard deviation course, on varying mobility parameter
α.

A first polynomial regression of 4th order of σ as function
of ν has been obtained:

σCST (ν̄) = m4ν̄
4

+ m3ν̄
3

+ m2ν̄
2

+ mν̄ + m0 (11)

Thus:

σCST (ν̄) = [m0, m1, . . . , m4] · [1, ν̄, . . . , ν̄
4
]
T

= 〈m〉T · 〈ν̄〉n=4 (12)

Matrix M’ in Fig. 6 summarizes mi values (on the columns)
for different D values (on the rows) with i=0, 1, ..., 4. A 2nd
regression of 5th order for different D values for each mi term
with i=1,2,..4 has been performed:

mi(D) = βi5D
5

+ βi4D
4

+ βi3D
3

+ βi2D
2

+ βi1D + βi0 (13)



Fig. 3. Matrix M

Fig. 4. Matrix C

Fig. 5. Matrix β

Fig. 6. Matrix M’

where βij is the polynomial coefficient with j=0..5 and i=0..4.

mi(D) = [βi0, . . . , βi5] · [1, D, D
2
, D

3
, D

4
, D

5
]
T

= 〈βi〉T · 〈D〉n=5 (14)

A third regression of 4th order is associated to the α variable
such shown below:

βij(α) = γij4α
4

+ γij3α
3

+ γij2α
2

+ γij1α + γij0 (15)

Thus β is a 5x6 matrix (as depicted in Fig. 5), where each
column is given by the following product:

βi = [γij ] · [α0, α1, α2, α3, α4, ]
T (16)

IV. SIMULATION RESULTS

In order to appreciate the accuracy of the proposed model,
some simulation campaigns were carried out; our scenario
consists of 10 wireless cells (each one covered by an access
point) with a radius length changing in the range [150-300]
meters; mobile hosts move inside the coverage areas in a
circular way (a user who is handed-out from the 10-th cell
will hand-in the first cell), following a 1-D RWPM [3]; the
proposed model is employed in our WLAN simulated net,
in order to predict the number of cells that mobile host will
probably visit (an important issue for prediction purposes).
An example of a possible application of CST prediction is the
reservation of bandwidth among cells that the mobile users
will probably visit during the call holding time (CHT). Fig.
7 shows the ratio in percentage value between the number of
users that do not find the available resources and the number of
total users that move among the WLAN cells (extra percentage
error); the curves show that the percentage error is under 7%,

Fig. 7. Percentage of number of visited cell in comparison with predicted
cells.

Fig. 8. Gap vs α percentage for different average ν values.

confirming that the estimated CST represents a good way to
obtain the number of predicted cells during the CHT.

Fig. 8 shows the average time-gap (s) between the predicted
hand-off times and the real hand-off times for different α and ν
values: as it can be expected, there are no important differences
with the samples-based case if the obtained regression function
is adopted for prediction purposes. In particular it is possible
to see as the maximum time-gap is below 0.3s.

V. CONCLUSIONS

An analytical study of the CST in WLAN networks has
been proposed. The CST has been evaluated as a function
of the average speed of the mobile user and its variation
around the average speed. A dependence of CST on the cell
radius (diameter) has also been considered and a regression
analysis has been performed in order to calculate an analytical
expression for the CST. Simulation results show the expression
of CST distribution parameters as a function of percentage
variation around the average speed and the cell diameter D
permits prediction of the right number of visited cells with a
percentage error lower than 7%.
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