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Abstract— In wireless networking the main desire of end-users 

is to take advantage of satisfactory services, in terms of QoS, 
especially when they pay for a required need. Many efforts have 
been made to investigate how the continuity of services can be 
guaranteed in QoS networks, where users can move from one cell 
to another one. The introduction of a prediction scheme with 
passive reservations is the only way to face this issue; however, 
the deployment of in-advance bandwidth leads the system to 
waste resources. This work consists of two main integrated 
contributions: a new pattern prediction scheme based on a 
distributed set of Markov chains, in order to handle passive 
reservations, and a statistical bandwidth management algorithm 
for the reduction of bandwidth wastage. The result of the 
integration is the Distributed Prediction with Bandwidth 
Management Algorithm (DPBMA) that is independent from the 
considered technology and the vehicular environment. Several 
simulation campaigns were conducted in order to evaluate the 
effectiveness of the proposed idea.  It was also compared with 
other prediction schemes, in terms of system utilization, 
accuracy, call dropping and call blocking probabilities. 
 

Index Terms— Bandwidth, Hand-over management, Markov, 
Mobility, Passive, Pattern, Prediction, Quality of Service, 
Resource Reservation, Optimization, Wireless Networks 

I. INTRODUCTION 

N recent years, mobile computing has become very popular 
with a rapid and emerging growth of Quality of Service 
(QoS) applications dedicated, mainly, to comfort and 

reliability. The congestion level, offered in a cellular scenario, 
may vary from one coverage area to another.  When mobile 
hosts make hand-overs among different coverage areas, they 
may find scarce resources in the new locations, with high Call 
Dropping Probability (CDP) values (or heavy degradations). 
To the best of our knowledge, there is only one way to ensure 
QoS and service continuity to mobile users: making a 
bandwidth reservation over all the cells that a Mobile Host 
(MH) will visit during its active connection. There are many 
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protocols that can ensure in-advance reservations like Next 
Step In Signaling (NSIS) [1], Dynamic ReSerVation Protocol 
(DSRVP) [2] and Mobile ReSerVation Protocol (MRSVP) [3], 
but a prediction scheme is mandatory, in order to know which 
coverage cells a user will probably visit during its Call 
Holding Time (CHT). It is essential to underline that the 
proposed idea does not depend on the adopted signaling 
protocol: MRSVP can be employed as well as DRSVP or 
NSIS. In addition, our attention does not focus on the hand-off 
time (detection, search, and execution phases) for changing 
the coverage area, but rather on ensuring that there will be 
sufficient resources in the new coverage cell. The first 
contribution of the paper is the proposal of a markovian cell 
prediction algorithm. The second effort of this paper consists 
in the enhancement of the pre-reservation phase, integrating it 
with a time-multiplexing algorithm, in order to optimize the 
system utilization and to reduce the CDP. In addition, since 
the mobility model has a heavy impact on the obtained results, 
we employed the Citymob for Roadmaps (C4R) mobility 
generator [4], that can extract mobility patterns from real 
roadmaps. The strength of the proposed algorithm, called 
Distributed Prediction with Bandwidth Management 
Algorithm (DPBMA), also lies in its independence from the 
specific coverage technology. The rest of the paper is 
organized as follows: section II gives an overview of the 
existing related work, section III describes the proposed 
scheme in five detailed subsections, section IV shows 
simulations results then section V concludes the paper.  

II. RELATED WORK AND CONTRIBUTIONS 

Mobility and resource management is critical for providing 
QoS guarantees in wireless networks, therefore it is very 
important to accurately describe movement patterns of mobile 
users in wireless cells, especially when prediction is needed.  

In [5] Si et al. propose a mobility prediction scheme for 
cellular networks, based on the analysis of personal mobility 
in large spatial and temporal scales. The authors stated that the 
Hidden Markov Model (HMM) fits system modeling and an 
improved algorithm is proposed to overcome possible 
calculating defects, demonstrating how HMM is efficient and 
accurate if adopted in a factual communication system. In [6] 
the authors proposed a new prediction scheme for analyzing 
time behavior in real deployment, obtaining strong results in 
terms of accuracy and energy consumption and solving the 
problem of continuous sensing in real deployments. In [7] the 
authors optimize system parameters in terms of CDP and Call 
Blocking Probabilities (CBP), introducing a prediction 
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algorithm based on data mining approaches, in order to 
implement a distributed Call Admission Control (CAC) 
scheme, also considering the throttle flag as an indication of 
the usage of each cell. The authors of [8] considered telecom's 
mobility management for mobile users’ movement 
monitoring, giving the possibility to evaluate the probability 
that a person will move from a location to another one after a 
certain amount of time. The authors illustrate how to manage 
the available data, provided by telecommunications 
companies, to derive the desired information, by employing 
the theory of Little's Law. The authors of [9] propose a new 
framework to estimate service patterns and to track mobile 
users, basing decisions on historical records and predictive 
patterns of mobile users allowing estimation of the next cells 
into which a mobile user will possibly move. In [10] the 
authors make a contribution to WLAN infrastructure planning, 
basing their decisions on mobility prediction: they propose a 
new method for feature extraction with a novel neural network 
classifier based on a hidden genetic algorithm. Further, in [11] 
the authors compared three Lempel-Ziv (LZ) prediction 
algorithms, analyzing in detail two independent phases (tree 
updating and probability calculation). They concluded that 
active LZ updating schemes achieve the highest hit rate, at the 
cost of a higher memory consumption, while the best 
probability calculation method is the Prediction with Partial 
Matching (PPM). In [12], [13] the authors propose an in-depth 
overview on centralized Markov prediction schemes, 
providing good detail on this topic in wireless networks. They 
considered the classical approach of the discrete sequence 
prediction problem, outlining the power of Markov predictors 
in this field of research. The authors show the strength of the 
considered schemes, making a comparison between them, with 
a maximum accuracy of 54%. Also in [14] a comparison is 
made among different orders of Markov chains, arriving at a 
prediction accuracy of 65%-70% in the average case. In our 
previous works, such as [15] and [16], a prediction technique 
based on the Cell Stay Time (CST) evaluation of a mobile user 
was proposed. A formula that relates cell coverage radius and 
mobility behavior is used and resource reservation techniques 
were proposed, thus, it is possible to evaluate the number of 
coverage cells that users will visit during their CHT. To the 
best of our knowledge, regarding the mentioned works, most 
of the existing prediction schemes are aimed at the prediction 
of a single next-cell and do not introduce bandwidth 
multiplexing. Other works predict future locations by 
considering users’ practices during the day and do not take 
into account the geographical morphology of the considered 
region, in terms of roads and traffic trends. In general, they 
guarantee neither a complete service continuity nor a good 
level of system utilization. In this work, instead, a distributed 
prediction algorithm is proposed. In particular, the main 
contributions of our work are: 

- Implementation of a distributed approach (instead of a 
centralized one), in which each coverage cell uses a 
particular Finite State Markov Chain (FSMC) in order to 
describe and predict local host movements. Each chain is 
“tuned” based on the particular coverage region, by the 
statistical analysis of the number of roads involved in the 
cell, in addition to the observation of users movements. 

Considering one predictor for the whole network has many 
advantages, but also some drawbacks: the training phase is 
flexible, as it is based on the observation of complete mobile 
movements during active connections. On the other side, cell 
identifiers resume user mobility, and this causes a loss of 
information about the area morphology and mobility 
behaviors. Distributed predictors, instead, give the 
opportunity of taking into account local mobility behaviors 
of mobile hosts, analyzing geographical morphology during 
the training phase. Our proposal is based on the statistical 
analysis of local host movements along urban roads and 
prediction error is not cumulative: with a single predictor for 
the whole system, accuracy decreases if the predicted 
sequence is longer. With a distributed approach, a local 
decision is affected only by the error committed for the 
current prediction and does not depend on previous errors; 

- Introduction of a roads compression approach based on 
dynamic programming: in our previous works we considered 
only one possible hand-over direction for neighboring cells; 
in order to avoid losing information about user road 
utilization preferences, taking them into account is useful (as 
we will demonstrate later).  In addition, in order to avoid the 
management of a larger number of roads, a compression 
scheme has been adopted, reducing the number of roads and 
minimizing the approximation error; 

- FSMCs training by taking into account local trajectories 
(belonging to the associated coverage cell); each predictor is 
specialized for the specific coverage area, with different 
traffic densities, in terms of roads, road populations, moving 
directions and so on; mobility has been generated by 
considering real maps and not synthetic models;  

- Statistical analysis of space/time user behaviors is 
conducted; in particular, the CST random variable is deeply 
observed in the dynamics of each cell, giving the possibility 
to know users time dynamics a-priori.  Thus, passive 
bandwidth can be “recycled” in order to reach a higher 
resource utilization and a reduction of the prediction error; 

- Differently from most of the existing centralized schemes, 
our distributed proposal aims at making a totally in-advance 
reservation, also guaranteeing service continuity (in terms of 
bandwidth availability) for non-tolerant applications, 
optimizing system performance concerning CDP; 

- Our proposal is completely independent from the considered 
signaling protocol (like one of the protocols in [1], [2] or 
[3]), mobility model or coverage technology and it does not 
need any information about user habits (like wake-up times, 
working hours, etc.). 

III. SUITABLE ENVIRONMENTS, PROBLEM STATEMENT AND 

SYSTEM MODELING 

We briefly present how a generic reservation protocol 
makes passive reservations through signaling. Then, the way 
we used to model the system through FSMCs is described and, 
finally, we introduce the concept of time multiplexing of 
passive resources. Table I summarises the main notations, 
concepts and abbreviations used in the proposal.  
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TABLE I. MAIN ABBREVIATIONS, SYMBOLS AND NOTATIONS. 

C Set of network cells 

c Number of considered network cells equal to ||C|| 

ct t-th cell of the system belonging to C, 1≤t≤c 
nt Number of edges/directions of the t-th cell (ct) 

rt Radius of the t-th regular coverage area 

St
ho Set of possible hand-off directions of cell ct 

dj j-th direction of St
ho (with fixed t)

RDdj j-th roads set, associated to dj with ||RDdj||=J 

rddjk k-th road belonging to RDdj 

λλλλt
j Compression factor for cell t and side j 

Tdj Array representing the CBT associated to RDdj 

tk k-th element of Tdj, obtained by compression  

Mt
j Partition vector for ct and side j 

μμμμt
jk k-th element of the partition set for cell t and side j 

ΩΩΩΩt Set of possible Markov states for cell ct 

sjk k-th state of side j for the Markov model of ct (fixed t) 

ΠΠΠΠt Set of Markov transition probabilities for ct 

ππππt
j1k1-j2k2 Transition probability from sj1k1 to sj2k2 

σσσσt Initial probability array for ct 

σσσσt
jk Initial probability for state sjk 

STt States sojourn times array for ct 

ft
jk State sojourn time pdf for state sjk of ct  

ττττt
in(αααα), ττττt

out(αααα) α-th hand-in and hand-out times for ct 

 CST realization for ct and a-th hand-over 

All requests are subject to an admission control policy on 
all the involved cells. When a user moves from one coverage 
area to another one, a reservation switch manages the hand-off 
event: the reserved resources in the old access point are 
released and the passive resources can be assigned by 
switching to an active reservation. Generally, a session starts 
with the active service request performed by a MH on its 
active cell and, if enough resources are available, passive 
reservations are made on the future cells. Message exchanges 
will be described in depth in subsection III.D. Our proposal is 
suitable for many technologies: cellular environments [18], 
especially from 3G to 4G, could benefit from our prediction 
scheme, as well as more recent WLAN families [19]. The 
table below gives an idea of some of the main characteristics 
of the suitable technologies. 

TABLE II. SOME SUITABLE TECHNOLOGIES FOR MOBILITY PREDICTION. 

 2G 3G 4G 802.11ac 
Medium 
Access 

TDMA 
WIDE 
CDMA 

OFDM/ 
SC-FDMA 

OFDM 

Channel 
Bandwidth 

(MHz) 
0.2 5 1.5-20 

20/40/ 
80/160 

Carrier 
Frequency 

(MHz) 

900/ 
1800 

2000 
900/1800 -

2600 
5000 

Max. 
Coverage 

Radius (km) 
35 0.1-8 ≅1-2 ≅0.015-0.030 

The application of the proposed idea is very easy in the 
case of a big provider, since they have access to their own 
mobility data. However, with all the features and services 
offered by new technologies [14], [24], [35], it can also be 
applied to low-scale WLAN environments, at the cost of an 
appropriate device configuration. 

A. Morphology adaptation and roads compression 

We considered a generic Geographical Region (GR) 
covered by a number of cells equal to c. Let C be the set of 
coverage cells of the considered wireless network, 
C={c1,c2,…,cc} with ||C||=c. First, we will analyze the 

structure of the cellular system for a regular (ideal) structure, 
then we will take into account the real coverage, where the 
shape of the cells is neither regular nor the same for all. 

1) Regular and irregular coverages 
For each cell ct ∈ C, 1≤t≤c, with a coverage radius rt, a set 

of neighboring cells Adj(ct) can be defined, on the basis of 
network topology and cell adjacencies. As in the classical 
treatment, a circular coverage cell can be approached with a n-
edge regular polygon and, considering n=6, coverage cells are 
represented by regular hexagonal areas, as approached in [20]. 
Differently from that work, we will show how considering 
only n=6 (without considering additional angles), the model 
suffers a certain error in further prediction making; therefore,  
more granularity is required, without increasing computational 
complexity, to adapt the local approximation model to the 
morphology of the covered region. Let GRx·GRy be the area of 
the considered region GR. We started our modeling by 
assuming that rt=R ∀ ct ∈ C with a regular coverage. When 
considering real coverage areas, we had to take into account 
that cellular shapes are affected by different factors, such as 
site availability, topography and traffic density [21].  Different 
studies in literature have shown that this problem can be well 
approached by Voronoi's theory [22]. It gives the opportunity 
of obtaining irregular convex polygons, able to approximate 
real coverage regions: for each ct∈C there will be an 
associated value n, indicated with nt, representing the number 
of sides (n cannot be defined a-priori, because it varies for 
each cell, depending on the particular shape). So, to overcome 
the inaccuracy of the classical regular model, Voronoi 
diagrams are considered for tessellation and system 
optimization. Let ||a-b|| denote the Euclidean distance between  
points a, b in a plane PL∈R2 and A={a1, a2, ..., as} a set of s 
points. Then, the Voronoi diagram is defined as a subdivision 
of PL into s corresponding polygonal regions PLv, v=1,2,...,s, 
such that for each point b∈PL, it is verified that: 

                                (1) 

This yields a plane tessellation, based on convex polygons 
around the points in the defining point set A, where any point 
within a polygon PLj is closer to the corresponding point aj 
than to any other points in A.  Assuming that radio signal 
strength drops in relation to distance, as stated in [21], [22], A 
can represent site locations, considering the Voronoi regions 
as network cells. In this work, we are not interested in deriving 
a Voronoi/Delaunay diagram from regular coverage: this issue 
has been extensively studied in literature [21], [22], [23]. We 
will consider, instead, how our proposed idea performs when 
irregular shapes are considered for cellular coverage. 

 
2) Roads compression through Run-Length Coding (RLC)  
At this point, it is necessary to make some considerations 

about roads topology. In our previous works [16], [17], [20], 
[24] we did not differentiate the model based on road 
densities. For each cell ct ∈ C a set St

ho of nt movement 
directions d1...dnt can be introduced. For the regular case, nt=n 
∀ ct ∈ C,  where dj=θ⋅(2⋅j-1)/2 rad., θ=2π/n rad. and j=1..n 
(the j-th side of the hexagon), so Sho={d1,...,dn} and ||Sho||=n. 
For the irregular case, we can only write that ||St

ho||=nt ∀ ct ∈ 
C. In this work ||Adj(ct)||=||St

ho||=nt, ∀ ct ∈ C. Referring to 
fig. 1 and considering the regular case, we can observe how a 

jisjibaba ji ≠=−<− ,,..,2,1,||,||||||

( )ατ
t
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cell ct ∈ C, on the basis of the value of rt, can manage a 
different number of roads: e.g., considering cells c1, c2 ∈ C, 
that cover real geographical areas (two locations of a city in 
southern Italy are considered), we can immediately observe 
how the number of possible hand-over roads for c2 (three sides 
on a total of six have only one possible direction for hand-
over) are lesser than for c1 (the crosses on the hexagonal sides 
represent some of the possible hand-in/hand-out points, i.e. 
intersections among roads and cell sides). 

 
 
 
 
 
 
 
 
 

Fig.  1. Different road densities for different coverage cells c1 and c2.  
 
For this reason, the model proposed in our previous works 

has been particularized for each geographical morphology, in 
order to take into account different probabilities of handing-
over from/to different roads belonging to the same dj∈ Sho. 
The main idea is to extend the number of states of the model 
in order to take into account all the possible crossing 
directions; on the other hand, model complexity cannot be 
increased indefinitely, so a correct trade-off should be found, 
aggregating, when possible, road information belonging to 
users mobility. For this aim, we considered the RLC approach 
of [25], in which an input sequence of a certain size is divided 
into a lower number of sub-sequences, each one represented 
by the average value.  The obtained partitioning minimizes the 
approximation error. The way to apply this approach to our 
model is now described. Let us assume that each coverage 
node (Access Point, Base Station, etc.) is able to recognize the 
direction from which a MH enters or leaves the cell 
(Direction-Of-Arrival - DoA, Angle of Arrival - AoA, location 
or tracking algorithms are present in the literature, depending 
on the adopted technology [26]). So, referring to a generic 
coverage cell ct ∈ C, for each dj∈ St

ho we can define a set of 
roads RDdj = {rddj1, rddj2, …, rddjJ} where rddjk ∈ [0,2π], 
k=1,…,djJ, ||RDdj||=J.  

 
 
 
 
 
   
 
Fig.  2.Cell directions subdivision for regular (left) and irregular (center) 

shapes and intersection degrees determination (right). 

From fig. 2 it can be seen how for each dj∈ St
ho which 

represents the “average” direction associated to side j, the 
lower and upper bounds can be determined, so each rddjk ∈ 
RDdj belongs to that interval. Figure 2 shows, on the right, how 
the angles of road intersections can be determined. Now we 
focus our attention on the generic j-th side of cell ct∈C, in 
order to introduce the way we optimized the number of states 
of the model. Given the sequence of roads/angles RDdj = {rddj1, 

rddj2, …, rddjJ}, with ||RDdj||=J and a compression factor (cf) λ 
(with λ≤J), the set RDdj has to be divided into λ sub-sequences 
and each of them has to be replaced with its average value. We 
followed the approach of [25], which is able to solve a 
subclass of the RLC scheme, for error minimization in a 
polynomial time, using a simplified dynamic programming 
approach.  

 
 
 
 
 
 
 
 
 
 

Fig.  3.CBTs and related arrays example for two different directions. 

In particular, each rddjk ∈ RDdj is associated to the terminal 
nodes of the base level of a Compact Binary Tree (CBT), 
composed by 2 J-1 nodes, assuming that J=2lJ. The CBT is 
represented by an array of the form Tdj=[t1, t2, …, t2J-1], where 
each element is associated to a node: the last J elements store 
the elements of RDdj, while each tk, with k<J, has two children 
t2k and t2k+1 and 2hk descendents, with hk=lJ -  log2k , which 
represents a subsequence Sk of the input sequence: 

       . (2) 

In addition tk=(t2k + t2k+1)/2=μk. Considering cells c1 and c2 
in fig. 1 and directions d1 and d6 respectively, fig. 3 shows the 
CBTs and the related arrays. With the approach of [25], the 
problem is solved by minimizing the quantity ERR(k,λ), 
representing the error of compressing the road subsequence Sk 
using λ values:  

 

                         (3) 

where εk is the mean square error committed with 
compression of road subsequence Sk with a single value: 

 
                        .            (4) 

For more details about dynamic programming and run-
length coding approach, please refer to [25]. At this point, for 
each cell ct ∈ C, an array Λt=[λt

1,… λt
nt] (with nt=6 for regular 

shapes) can be defined, where each λt
j indicates the best 

compression factor for cell ct associated to RDdj on direction 
dj∈ Sho and 1 λt

j ||RDdj||. For each λt
j, a partition vector Μt

j 
= [μt

j1, …, μt
jλj] represents the compressed sequence, for the j-

th side of cell ct; each element μt
jk has an associated partition 

range pt
μjk, belonging to the j-th Partition Set PSt

j, defined as: 
 
 
 
                         (5) 
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PSt=[PSt
1, ..., PSt

nt] are used will be described in depth, in 
order to give a detailed dissertation on how the Markovian 
theory is introduced to make predictions. It must be observed 
that each λt

j has to be determined accurately: the minimum 
value is 1 (maximum compression, as in our previous works), 
while the maximum is J (no compression, but the number of 
possible directions is the same as the number of roads on side 
j). In the performance section, an in detailed analysis is 
introduced in order to choose the right value of λt

j for each 
side. 

B. Markovian modeling based on roads compression 

In this subparagraph, the Markovian prediction theory is 
introduced and the related model is proposed. Figure 4 
resumes the different steps explained before referring to a 
generic cell ct, with which a set of roads has been associated to 
each side of the coverage cell and then used to carry on a 
dynamic compression (1); then a partitioned set of possible 
"virtual roads" directions has been obtained (2); the last step is 
the definition of a Markovian prediction model and the 
association of the partitioned ranges pμjk to the states of the 
model (3).  

 
 
 
 
 
 
 
 
 
 
 

            .......... 

Fig.  4.Roads-to-states process illustration. 

The considered model is an extension of the FSMC 
previously proposed [3], [15], [17]. In fact, given the vectors 
Mt and PSt defined in the previous section, with 
||PSt||=||Mt||=nt, the idea is to associate one state of the 
Markovian model to each partition subset, representing a 
compressed set of roads, for each side of ct. So, with this aim, 
remembering that: 

 

                               (6) 

 

a Markov chain with the structure of fig. 5 can be 
associated to a cell ct. For the sake of simplicity and 
readability we did not depict a two-dimensional Markov chain 
and, in fig. 5, the connections between the chains associated to 
different sides resume all the possible transitions among two 
generic states sj1k1 and sj2k2, with j1 j2. A road rddjq , that 
intercepts cell ct on side j, is said to belong to state sjk if:  
                        

                               (7) 

The proposed Markovian road-compression model, 
illustrated in fig. 5, associates one state of the chain to one 
subset of a coverage side. 

 

 

 

 

 

 

 

 

Fig.  5.An example of Markov modeling for a generic coverage shape. 

 The set of possible states for cell ct ∈ C is 
Ω t ={s11,...,s1λ

t
1,s21,...,s2λ

t
2,...,snt1,...,sntλ

t
n,} and the finite state 

sequence is Q=q1, q2, …, qm, with: 

                                   (8) 

where m is the length of the observation sequence. For cell 
ct ∈ C, as known from theory, three key elements can be 
defined for its Markov chain MCt: a set of state transition 
probabilities ΠΠΠΠt, the initial probability array σσσσt and the state 
sojourn times array STt:  

                                               (9) 

where ql represents the current state and         , 1≤j≤n; 

                        (10) 

                                                        (11) 

where f t
jk(x)=pdf t

jk is the probability density function 
(pdf) associated to state sjk sojourn time. We can write that the 
MCt can be completely described as follows by a triplet: 

                         (12) 

Figure 6 illustrates an example of how a distributed set of 
MCs MC={MCt, 1≤t≤c} can be used to model the whole 
cellular system (in the general case of irregular shapes).  

 
 
 
 
 
 
 
 
 
 
 
 
Fig.  6.Wireless cellular system modeling through MCs (c=11).  

Supervised training can be approached because the 
observations of MHs movements are available (in our case by 
a detailed system simulator, as explained in next sections), so 
MCt inputs and desired outputs are known. Training 

)/(},{
112222112211 1 kjlkjlkjkj

t
kjkj

tt sqsqp ====Π +−− ππ

( ).,, tttt STMC σΠ=

02211 ≥− kjkj
tπ

njsqP jkjk
t

jk
tt ≤≤=== 1),(},{ 1σσσ

}1,)()(/{ njdxxfPST t
jk

t
jk

t
jk

t ≤≤=<=
∞−

ε

εεε

[ ]
[ ]

[ ]},....,

...

,,....,

,,....,{

21

22221

11211

2

1

nn
t

n
t

n
t

ttt

ttttM

λ

λ

λ

μμμ

μμμ

μμμ= [ ]
[ ]

[ ]},....,

...

,,....,

,,....,{

21

222221

111211

nnnn

ttt

ttt

tttt

ppp

ppp

pppPS

λ

λ

λ

μμμ

μμμ

μμμ=

.jkjq

t
d prd μ∈

=

==Ω
tn

j

t
j

t mQand
1

,|||||||| λ



slot1

slot2

slot3

req. 1

req. 2

req. 3

req. 4

req. 5

req. 6

req. 7

req. 8

req. 9

req. 10

τin
t-1 (α1) τout

t-1 (α1)

τin
t-2 (α2) τout

t-2 (α2)

τin
t-3 (α3) τout

t-3 (α3)

τin
t-4 (α4) τout

t-4 (α4)

τin
t-5 (α5) τout

t-5 (α5)

τin
t-6 (α6) τout

t-6 (α6)

τin
t-8 (α8) τout

t-8 (α8)

τin
t-7 (α7) τout

t-7 (α7) τin
t-9 (α9) τout

t-9 (α9)

τin
t-10 (α10) τout

t-10 (α10)

3rd req

3rd req

time

DRAFT

observations consist in a set of hand-over direction sequences. 
The Maximum Likelihood Estimation (MLE) can be used for 
evaluating of ΠΠΠΠt, σσσσt, STt as follows: 

             (13),           (14) 

              (15) 

where ctnj t ≤≤≤≤ 1,1 , TRt(sj1k1,sj2k2) is the number of 

observed transitions from state sj1k1 to state sj2k2 in cell ct (a 
transition from sj1k1 to sj2k2 occurs when, in the training data, a 
MH hands-in cell ct from side j1 on a road rddjk belonging to 
compressed partition pt

μj1k1 and hands-out to side j2 on a road 
rddjq belonging  to compressed partition pt

μj2k2), Nt(sj1k1) is the 
number of transitions from state sj1k1 to any other state of ct, 
σt

jk represents the probability that state sjk is the first observed 
state (q1) in the training observations for ct and it is calculated 
as the ratio between the number of occurrences of sjk being the 
first observed state FIRSTt(q1=sjk) and the number of total 
observations of first states Nt(q1). For the state sojourn times 
array STt, it must be noticed that, in the proposed model, the 
time elapsed from the hand-in to the hand-out in a given cell ct 

matches with the CST of the same cell, independently of the 
involved sides/partitions (as demonstrated in [3], [15], [24]). 
From previous research results, we can state that the pdf of 
CSTt follows a Gaussian distribution, so the related parameters 
can be evaluated through simulation campaigns (as shown 
later). Details about learning and evaluation of the model can 
be found in [27], [28]. It is clear that, before the prediction 
algorithm takes place, each MCt belonging to cell ct∈C needs 
to be trained, so the terms expressed in equations (13, 14, 15) 
can be evaluated by observing MHs movements (in our case 
we carried out a campaign of simulations, observing MH 
behaviors from the traces generated by [4]). 

C. MUltipleXing (MUX) of passive reservations 

Once the most probable cells are predicted, the signalling 
protocol should be able to enhance resources utilization 
through the employment of a resource multiplexing scheme: 
the idea is to make the earlier-reserved bandwidth in ct for an 
MH available for other users before the MH arrives in ct, so it 
can be considered as an available resource when other 
incoming traffic makes a service request to ct. In addition, 
another reason for employing system multiplexing is 
represented by the enhancement of prediction error: although 
an MH fails to find a pre-reserved bandwidth on a new access 
point (i.e. it has arrived in a not-predicted cell) the availability 
of more resources reduces the probability of dropping the 
flow. Recalling briefly that shown in previous works [3], [15], 
the pdf of average time spent by a user in a coverage cell ct∈C 
can be well approached by a Gaussian distribution 
Nt(meant

CST, stdevt
CST) and its parameters can be evaluated by 

observing real samples of MHs movements. Given τt
in(α) and 

τt
out(α), which represent the predicted hand-in and hand-out 

times to/from a cell respectively for the α-th hand-off event in 
cell ct, then:  

                        (16) 
where t1 ≠ t is the identifier of the cell to which a MH will 

hand-in from ct at the (α+1)-th hand-over event, and tτ is a 

realization of Nt(meant
CST, stdevt

CST), which can be obtained 
with the Box-Muller algorithm [29], [30]: 

                            (17) 

where u1 and u2 are two random numbers, uniformly 
distributed in (0,1]. If eq.(16) is generalized, then:  

                          (18) 

where tm is the predicted cell identifier for the m-th hand-
off and τt0

in(0) is assumed to be the time at which the call has 
originated in cell ct0. So, for a generic α-th hand-over event, 
the time at which a MH will enter a cell can be evaluated by 
considering statistical distributions. Each coverage cell ct∈C, 
at a certain time, has nst

a slots (or channels) used to 
accommodate active reservations (incoming calls), nst

p slots 
used to accommodate passive reservations (in-advance 
requests) and nst

f free slots. The sum nst=nst
a+nst

p+nst
f 

represents the total capacity of the cell (initially nst=nst
f) [3], 

[20], [24]. As illustrated previously, each passive request, 
indicated with reqx, has predicted hand-in and hand-out times, 
as derived in eq. (16), indicated with τt-x

in(α) and τt-x
out(α) 

respectively, where α indicates that the bandwidth reservation 
of duration τt-x

out(α)-τt-x
in(α) is made for the α-th hand-off of 

the x-th request. If the Time Set (TS) of the x-th request in cell 
ct is defined as: 

                        (19) 

then, two generic passive requests x and y have no time 
intersection if: 

                       (20)            
or, equivalently: 

                                   (21) 

where α, β are the hand-off indexes for x-th and y-th 
passive requests respectively. So, fixing the resource slot 
(bandwidth amount or channel) and assuming that condition of 
eq. 20 is satisfied among a new incoming passive request and 
all the existing ones, then the new request can be 
accommodated in the slot that has been already used.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.  7.Typical passive bandwidth management with time multiplexing.  

In fig. 7, three slots are considered and the condition of 
null intersection is verified for requests 1,4,7,9 on slot 1, 
requests 2, 5, and 8 on slot 2 and requests 3, 6, and 10 on slot 
3. The 3-rd request cannot be inserted either in slot 1, because 
INTERSECT(3,4)≠∅, or in slot 2, because 
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Mobile host MH
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made in [1]

Use MCt to discover the 
next neighbor cell nc ∈∈∈∈

Adj(ct) and send a 
Passive Request to it

NHO>0

Accept the 
request

Try to use MCt to
multiplex the request in 

a nst
p slot , if no nst

f

slots are available; 
NHO--

nc receives a 
passive request 
for host MH; set 

ct=nc

Mux ok

yes

yesno

yes

Refuse the 
request

no

INTERSECT(3,2)≠∅  and  INTERSECT(3,5)≠∅. So, when a 
slot cannot be used for an incoming request, a new “free” slot, 
if it exists, has to be chosen and a criterion should be 
followed. Since the available slots represent a scarce resource, 
the fairness criterion should be respected among the new 
arriving requests. Therefore, an appropriate allocation policy 
must be employed, so we considered the following index [31] 
for the whole cell ct: 

         (22) 

where: 

                       (23) 

Equation 22 gives an idea of the equality of the allocation of 
the slots of each cell: if all the slots of ct get the same amount 
of passive requests, then it goes to 1; when the assignment is 
unfair, it goes to 0. A threshold value thrfair is considered (the 
same for each ct, without loss of generality): cell ct respects 
the fairness condition if fairct  thrfair. 

D. Prediction and Multiplexing Integration: DPBMA 

Before the prediction algorithm takes place, each MCt 
belonging to cell ct ∈ C needs to be trained, so the terms 
expressed in equations 13, 14, and 15 can be evaluated by 
observing MHs movements (in our case we carried out a 
campaign of simulations, observing MH behaviors from the 
traces generated by [4]). In this way, for each cell ct ∈ C the 
related MCt model is completely characterized. The 
integration follows the diagram illustrated in fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  8.Flow Diagram of reservation protocol integrated with the predictor. 

The protocol starts with the active service request 
performed by MH on cell ct; if there are not free slots in ct, the 
call is refused, otherwise cell ct applies the results obtained in 
[3], [24] to evaluate the number of predicted hand-over events 
NHO. If no hand-over events are predicted, then the call is 
accepted (the MH will visit only the current cell ct), otherwise, 
the MCt is evaluated and a passive bandwidth request is sent to 
the predicted neighbor cell nc∈Adj(ct), also containing the 
number of remaining hand-over events NHO-1. The cell nc 
becomes the current one and it tries to apply the multiplexing 
algorithm of MCt  introduced in the previous sub-section; if 
there is no space for the passive request, a negative message is 

sent to MH, if NHO>0 the last two steps are repeated, and 
(NHO==0) the passive request is accepted. Following the 
same approach of [3], when a new passive request arrives in 
cell ct, the proposed algorithm tries to obtain 
util(slott

j)≅util(slott
k), satisfying the criterion of eq. 22, so: 

1) When a new passive request reqx arrives to the cell ct and fairness 
criterion is not satisfied, candidate nst

p slots are sorted in increasing 
order of fairct;set j=1; 

2) Starting from the j-th element of the ordered list, if the condition of 
eq. 20 (or eq. 21) is satisfied for each existing passive reservation, 
then reqx can be accommodated in the j-th slot tpi; otherwise j=j+1 
and step 2 is fully repeated; 

3) If also the last slot is full, then reqx will be not accepted, ct sends a 
negative message to the mobile host. 

E. Complexity 

From a computational point of view, different phases 
should be considered: 

- LOCALIZATION COMPLEXITY (LC): as already stated, 
before making mobility predictions, or collecting MHs 
directional statistics, all coverage cells have to define the RDdj 
sets for each side, with j=1,...,nt. For this objective, the 
determination of DoA (or location) for MHs implies a certain 
complexity O(LOC), depending on the considered physical 
parameters. In this way, all the cells of the considered network 
can obtain a complete set of roads, in the worst case, with a 
complexity of: 

        LC=MHN O(LOC)                   (24) 

where MHN is the number of observed mobile hosts; 
because it must be applied for all the n directions for each 
observed MH; it must be noticed that the localization 
algorithm needs to be executed only once, during the training 
phase and not for predicting movements; 

- COMPRESSION COMPLEXITY (CC): at this point, once 
the number of roads has been determined, each cell can apply 
the compression algorithm, in order to optimize the number of 
states of the associated Markov chain. From [25], it is known 
that the complexity for a generic numeric data compression is 
O(Z2logZ), when the optimal λt

j has to be determined (Z is the 
length of the numeric sequence to be compressed). For a cell ct 
∈ C, it can be written that: 

                               (25) 

applied for the nt sides of ct, where RDMAX is: 

                              (26)  

Since the compression level is strictly related to the 
prediction error (as shown in section IV), in our proposal the 
determination of the optimum value of λt

j is not considered. 
We analyzed, instead, how CC varies in function of J (number 
of roads on side j to be compressed) and λt

j, because we are 
interested in finding a good trade-off in terms of complexity 
and prediction error. In particular, in fig. 9, the trend of CC 
(for a generic cell ct and a generic side j) is depicted. In order 
to make the values comparable for different cases, they have 
been normalized in [0,1] by dividing each obtained value by 
the maximum one. The curves were obtained by fixing J and 
considering the computational complexity for different values 
of λt

j, while determining each possible cut-set of the original 
binary tree.  
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Fig.  9. Compression complexity (normalized to 1) for different number 
of roads (J) and different values of desired λt

j. 

As illustrated in [25], when dealing with tree cut-set 
determination, the complexity goes increasing until λt

j is equal 
to J/2 (because an increasing number of combinations is 
needed), so the worst case is obtained for a number of 
compressed roads equal to J/2. Lower values (λt

j<<J/2, higher 
compression) or higher values (λt

j>>J/2, lower compression) 
lead the system to a more acceptable complexity. Also in this 
case, this operation is executed once, after the number of roads 
has been determined; 

- TUNING COMPLEXITY (TC): after the compression 
phase, for each cell the number of partitioned ranges for each 
side has been determined, so the number of states is also 
known. In particular, the number of states for chain MCt 
associated to ct, indicated with ||MCt||, is given by: 

 
                                (27) 

In this phase, the terms of eq. 13, 14, and 15 need to be 
obtained; the algorithm, simply evaluates the values of the 
parameters of those equations, by observing users mobility, 
determining their DOA, recognizing the membership to the 
partitioned sets (ranges expressed in eq. 6) and updating the 
parameters, so the complexity becomes: 

                                (28) 

At this point, it must be outlined that, for each ct ∈ C, the 
total complexity given by CTOT=LC+CC+TC is considered 
only once in the training period (all the chains learn the roads 
topology and users mobility behaviour).  Once the parameters 
of the model associated to ct∈C are defined, the prediction is 
made in a constant time, using the transition matrix and the 
CST information. 

IV. PERFORMANCE EVALUATION 

In order to evaluate the proposed integration in terms of 
average prediction error, system utilization, CDP and CBP, we 
considered real mobile environments: Citymob mobility 
generator and the C4R GUI [4] were considered, as they give 
the opportunity to obtain mobility traces from real maps. In 
particular, we used many urban maps of some European cities 
(about 2.5 Km2 for each scenario), over which a set of 
coverage cells was considered. For regular shapes, all the cells 
are supposed to have the same radius R (rt=R, ∀ ct∈C) and R 
∈ [10,1000] meters; for irregular shapes, Voronoi tessellations 
were considered, as illustrated later. Regarding the regular 

coverage ranges, we can suppose that for R∈[10m,30m] the 
IEEE802.11ac,ad or HetNet femto-cells [28] technologies are 
used, for R∈[100m,1000m] the system can be covered by 3G 
cells and for R∈[800m,1000m] the access technology can 
belong to 4G. We did not consider 1/2G to avoid analyzing 
old technologies.  

A. Algorithm modeling and parameters description 

As stated before, different cities were considered and, for 
all of them, obtained results are comparable: without loss of 
generality, we show the obtained curves for the city of 
London. We considered a variable coverage range for the 
regular case. Figure 10 illustrates, on the left, the obtained 
regular coverage for R=140m and GRx≅GRy≅1600m (in this 
case c=42), and on the right, a Voronoi diagram with c=33.  

 

 

 

 

  

 

 

Fig.  10.The set of 42 (regular) and 33 (irregular) cells used to cover GR. 

Once the GR topology and the map have been determined, 
the compression algorithm needs to be executed for all cells 
(with a total computational complexity of c CC).  

 

 

 

 

 

 

 

 

Fig.  11.Road sets for some cells of the considered network. 

In order to choose the right number of partitions for each ct 
and for each related direction, a compression factor cft is 
chosen, so: 

                                 
                       (29) 
 

where the [.] operator indicates the integer part. For each 
cell ct, a number of total slots nst equals to 20 was considered 
and each reservation occupies a single slot in each cell (active 
or passive). Only for example, Table III resumes the values of 
||RDdj|| and λt

j for three regular cells (c10, c18, c33) and three 
irregular cells (c12, c24, c26) as illustrated in fig. 11. 
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TABLE III. 
NUMBER OF ROADS FOR EACH DIRECTION FOR CELLS C10, C18, C33 (REGULAR) 

AND C12, C24, C26 (IRREGULAR). 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  12.Road sets partitioning for cell c10 with different cf values. 

Regarding fig. 12, basing the dissertation on the first row 
of table IV, we can observe that for high values of cft, a lower 
number of virtual roads (i.e. number of states for the model) is 
obtained for each direction, with a lower granularity. Table IV 
indicates the obtained ΛΛΛΛt sets for different values of cft. 
Considering the cases of cft=0.2 and cft=0.8, the Markovian 
models for cell c10 become the ones of fig. 13.  

TABLE IV. 
THE NUMBER OF COMPRESSED ROADS SET FOR THE CONSIDERED CELLS. 
 

 

 

 

 In particular for cft=0.2 (low compression), 
Λ10={4,4,2,2,2,2} (starting from an initial condition of 
{4,4,2,3,3,3} for cft=0): directions d1, d2 and d3 are not 
affected by compression, so the original roads are still 
considered). The extreme case is cft=0.8, for which 
Λ10={1,1,1,1,1,1}. The same trend was obtained for all the 
other cells. In order to understand better how the different road 
sets are partitioned, cell c10 has been considered graphically, 
fig. 13, for different compression factor values (0.2, 0.4, 0.6 
and 0.8). 

 

 

 

 

 

 

 

 

Fig.  13.Markov chain for c10 with a) cft=0.2 (16 st.) and b) cft=0.8 (6 st.). 

B. Obtained results  

First of all, a training campaign was performed in order to 
obtain the elements of MCt and CSTt, relating to the 
considered map. We considered the Kraub mobility model [4] 
(with Acceleration = 1.4m/s2, Deceleration 2m/s2, σ=0.5 and 
τ=0.2s) for 400 simulations with 1200s of duration and a 
number of 300 vehicles for each run. Mobility log-files were 
obtained and, then, the coverage set of cells was considered 
(regular and irregular). Different compression factor cft values 
were used for regular and irregular coverage, as well as 
different coverage radius R values for the regular one. So, 
once the road topology and the number of states were 
determined for each cell ct, then a set of dedicated and 
supervised training campaigns was carried out, based on 
mobility log files, with the aim of evaluating the terms 
expressed in equations 13, 14 and 15 (the Maximum 
Likelihood Estimation - MLE method has been used). Figure 
14 gives an idea of the obtained parameters, for regular 
coverage and R=110m.  

 

 

 

 

 

 

 

 

Fig.  14.Transition probability matrix Π10 for c10, with cf10=0.4 and the 
probabilities of first states σ10.  

We considered a Call Arrival Rate (CAR) of 5 reqs/s. Due 
to  space limitations, only the parameters of one cell are 
depicted, in particular for cell c10. Figure 14 illustrates the 
transition probability matrix Π10, for which each element is 
evaluated as the mean value on all the carried-out simulations. 
The initial probabilities vector for cell c10 is also shown. 
Mobility effects on the borders are ignored by neglecting 
mobile trajectories that go outside the coverage set. Figure 15 
shows how the system responds to DPBMA in terms of 
system utilization for a regular coverage scenario; it is 
calculated as: 

                             (30) 
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that is to say, the average of the ratio between the active 
bandwidth slots and the total ones, for each cell. 

 

 

 

 

 

Fig.  15.Average system utilization for different values of R (regular 
coverage) and compression factors cf. 

It is evident how, without the multiplexing approach (NO 
MUX), the system is under-utilized (u% belongs to the range 
[31, 72]). There is an increasing trend for higher coverage 
radius: when the number of cells decreases (from ≅7900 to 
≅3),  there is a lower number of passive reservations (lower 
cells have to be predicted because of the higher geographical 
covered region); in this case, also the protocol overhead 
decreases, because there is a lower number of cells among 
which the signalling packets have to be exchanged. Regarding 
the compression factor cft, it can be noticed how it does not 
affect the performance in terms of utilization: the maximum 
gap is about 2.2%. On the contrary, more acceptable results 
are obtained when the multiplexing scheme (MUX) of 
DPBMA is activated, giving the possibility of re-using passive 
slots. It is evident how the introduction of multiplexing of 
bandwidth gives the possibility of achieving a higher 
utilization to the system, since passive resources are re-used, 
taking into account the time of arrival of mobile hosts. It is 
shown how a gain of about 13%-25% is obtained, depending 
on coverage radius and compression factor. The increasing 
trends are similar to the ones explained before. In fig. 16, the 
obtained average utilization for the irregular coverage map is 
shown. 

 

 

 

 

 

 

Fig.  16.Average system utilization for different values of QoS requests 
percentage and compression factor cf (irregular coverage). 

 The values on the x-axis represent the percentage of 
service requests requiring passive reservations; the other ones 
are served by simply reserving bandwidth in the current cell 
(only active reservations). It can be seen how, also in this case, 
the compression factor cf does not affect the obtained curves, 
while there is a different trend for MUX and NO MUX 
scenario. When the passive requests are not multiplexed, the 
huge amount of passive bandwidth is not used by flows, until 

the respective MH arrives into the considered coverage. For 
this reason, system utilization decreases for higher percentages 
of QoS requests (more unused passive resources). In the MUX 
case, instead, although there are passive reservations, resource 
does not remain unused, so they can be multiplexed until the 
MH arrives into the cell. In fig. 17, the prediction error 
evaluated for the first four hand-over events is illustrated. For 
a single simulation, it is evaluated as the ratio mNOK/mTOT, 
where mNOK is the number of users that do not find a passive 
reservation after four hand-overs and mTOT is the number of 
total users considered during simulation time. The cf values of 
0.2, 0.6 and 1 have been considered, with activated (MUX) or 
deactivated (NO-MUX) multiplexing scheme. Also in this 
case, the multiplexing scheme does not heavily affect the trend 
(the maximum gap is around 2.3%). 

 

 

 

 

 

 

 

Fig. 17.Average prediction error for different values of R and 
compression factor cf, in MUX and NO-MUX cases (regular coverage). 

Even in this case, the trend increases both for higher 
coverage radius (host movements are more casual if the 
considered area is larger) and cf values (system loses 
granularity about users movements, because less roads are 
considered, as well as less chain states). Nevertheless, the 
committed prediction error falls below 20%. In this case, it is 
assumed that only one cell is considered as the next one for 
the first hand-over. As shown in our previous works [17], [20], 
the error can be decreased if more than one cell is considered 
as future ones for the first hand-over. It has been verified that 
the maximum value for e% is around 9%-10%, considering 2 
next cells for each hand-over. 

 

 

 

 

 

 

Fig.  18.Average prediction error for different values of QoS requests 
percentage and compression factor cf (irregular coverage). 

From fig. 18, it is possible to see the trend of the average 
prediction error for the considered irregular map. Clearly, 
when the percentage of QoS requests is null, no errors can be 
obtained. According to the previous case, increasing the cf 
leads to a higher prediction error: it belongs to the range 
[10.1%, 14.2%]; the increasing in function of QoS requests 
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percentage can be neglected (it is lower than 1.1%). Figure 19 
shows the trend of the passive reservations made on cell c18 of 
the regular coverage network, for slots 1, 10 and 20, with 
R=110m and cf=0.4 (obviously the MUX scheme is active). 
The observation time in the figure is 120s and it is shown how 
the passive reservations are correctly distributed over the 
available slots (only the trend of 3 over 20 slots is illustrated, 
in order to avoid graphical overlays).  In the first considered 
amount of time (from 0 to 50 s) the system is observing a 
transient period, after which a steady condition is reached. 
This behaviour was observed for all the cells of the system 
(with regular or irregular coverage). 

 

 
 

 

 

 

Fig.  19.util(s18
j) for c18 (slots 1,10,20) over time (regular coverage). 

In fig. 20 the course of the CBP (the probability that a new 
service request is blocked) is illustrated.  It is evident how for 
a larger R it increases, because each cell will cover a larger 
geographical area (so it will serve more users), while the 
number of available slots remains the same.  In addition, as 
expected, the cf value does not affect the policy (the maximum 
gap is around 0.022), there is a slight decreasing of CBP 
because, for higher prediction values, the system 
overestimates the available resources and admits more users. 
The difference in employing the multiplexing scheme is more 
evident for a larger coverage radius, although the maximum 
gap is obtained for 190-210 meters. Before these values the 
difference is negligible, while for higher values it is evident 
how, without the multiplexing algorithm, the system suffers 
more call blockings, since it is not able to face the higher 
number of service requests. After R=600m the CBP values 
become stable.  

 

 

 

 

 

 

 

Fig.  20.CBP vs R and cf (regular coverage). 

Figure 21 confirms the trend for the CBP for the irregular 
coverage case: it can be observed how it does not depend on 
the percentage of QoS requests and on the compression factor 
cf (maximum gap is around 0.01) but, as in the previous 
figure, the difference between the MUX and NO MUX cases 

is evident. The multiplexing algorithm introduces a decrease 
in the CBP of about 0.06. 

 

 

 

 

 

 

Fig.  21.CBP vs QoS requests percentage and cf (irregular coverage). 

 

  

 

 

 

 

 

 

 Fig.  22.Trend of CDP vs R and cf (regular coverage). 

Figure 22 shows the trend of the CDP for different values 
of R and cf. For small coverage areas (R<150m) there is a 
negligible probability of calls dropping (below 7.5%) because 
of (based also on the trend of prediction error) more 
deterministic host movements in the network. In addition, a 
higher value of cf causes the prediction algorithm to lose more 
road information granularity, arriving to the simplest case of 
one direction for each coverage side: this explains why curves 
increase their trend for higher cf values. In this case, the 
impact of multiplexing is evident.  When the system gives the 
possibility of recycling passive reservations, there will be 
more bandwidth availability for new incoming calls so, when 
the prediction algorithm fails to find the right cell, more 
bandwidth will be available in the cell where the MH has 
handed-in, giving the possibility to continue the ongoing flow.  

 

 

 

 

 

 

 

Fig. 23. CDP vs QoS requests percentage and cf (irregular coverage). 

For different cf values, the larger the coverage area, the 
higher the CDP reduction, which arrives at about 0.041. 
Therefore, we can observe that the activation of the MUX 
algorithm gives the opportunity of reducing the overall 
average prediction error, since more bandwidth is available 
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when a prediction fails. Figure 23 shows the trend of CDP for 
the irregular coverage case: also in this case the multiplexing 
algorithm gives a contribution to the trend (about 0.042), 
which is not affected by the QoS requests percentage. 
Increasing the compression factor will result in a performance 
worsening: starting from values equal or below 0.05, the CDP 
increases until 0.106. 

C. Performance comparison for a real scenario 

In this subsection, a real scenario is considered, as 
illustrated in fig. 24. The GR is delimited by the rectangle and 
the irregular coverage is represented as a Voronoi tessellation. 
As previously mentioned, our attention does not focus on the 
way the tessellation is obtained, but the aim of this work is 
also to demonstrate that the proposed idea is suitable for 
regular coverage, as well as for irregular ones. As shown, 
C={c1,…,c22}, c=22, GRx=12.8Km, GRy=12.6Km.  

 

 

 

 

 

 

 

 

 

Fig.  24.Real map of the considered GR. 

The radio-mobile coverage was obtained by particular 
telecommunication company measurements, considering 
UMTS performance of a particular delimited zone in southern 
Italy (Vibo Valentia province), ||GR||=161.3Km2. It is shown 
how the UMTS coverage can be approached by a Voronoi 
tessellation. Table V summarises the main parameters of the 
considered cells. 

TABLE V. 
MAIN RADIO-MOBILE PARAMETERS OF THE CONSIDERED COVERAGE CELLS 

 

 

 

 

 

 

 

 

 

 

 

We neglect the border effects, considering only the 
dynamics of GR (inside the square area). In order to evaluate 

the effectiveness of the proposed idea, different comparison 
schemes were considered.  As illustrated in the related work 
section, only a few of them consider multi-step prediction, by 
taking into account user behavior during the day. In particular, 
the authors of [9] propose a prediction framework for the User 
Mobility Profile (UMP).  The algorithm does not evaluate the 
cells that will be traversed by the user but, given its mobility 
status (position, speed and direction), the probabilities of each 
cell that the user can cross in a future moment are evaluated. 
The prediction algorithm makes use of three main data 
structures Trace Record Matrix (TRM), Path Database (PD) 
and Historical Path Database (Dx

H). The prediction is valid and 
useful only for a specified period of time and for a number of 
cells that are likely to be likly crossed. In general, the more 
cells considered in the prediction, the better the obtained 
approximation will be, but with a higher expense of the 
required computational resources. For a second comparison, 
we considered a single-step prediction scheme [11], belonging 
to Lempel-Ziv algorithms; in particular we considered the 
Active LeZi scheme (ALeZi) [34], which shows the higher 
hit-rate in prediction, if the PPM scheme is coupled with it. In 
[11], [34] the way the ALeZi scheme builds the prediction tree 
is described. In order to apply this scheme, for each ct ∈ C a 
symbol st (cell identifier) has been defined, obtaining the set S 
of the available symbols. The probability calculation is based 
on PPM algorithm, observing the previous (k-1) symbols in 
order to predict the k-th one. Regarding our scheme, the MUX 
algorithm was considered to be active, with a compression 
factor cf=0.4 (as can be seen from simulations, this value 
represents a good trade-off for the obtained performance: 
system utilization maintains higher than 90%, prediction error 
has a mean value of about 0.12, CBP assumes the average 
value of 0.1 while CDP maintains below 0.11 in the average). 
While the ALeZi scheme considers only the most suitable next 
cell, DPBMA and UMP profiles are able to predict more than 
one cell for each hand-over. The cases of 1, 2 and 3 cells for 
next hand-over events were considered for both DPBMA and 
UMP.  

 

 

 

 

 

 

Fig. 25. Comparison of DPBMA, UMP, ALeZi in terms of utilization. 

 In fig. 25, the comparison, in terms of system utilization, 
among the proposed scheme and the considered ones is 
proposed, varying the CAR. It is possible to observe how the 
ALeZi scheme outperforms the other ideas, only because it 
provides one predicted cell for each step, so it does not take 
into account the CHT and only the next cell is considered. 
Passive reservations are not present in the ALeZi scheme, so 
no bandwidth wastage is introduced into the system. The 
slight degradation in utilization for the ALeZi scheme is due 
to the normal overhead of the MRSVP protocol, which wastes 
communication channels for signalling protocol messages. In 
addition, the DPBMA offers acceptable results.  For 
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increasing values of CAR, it offers better performance for the 
reasons explained before and, in all the cases, it outperforms 
the UMP.  In particular, for high CAR values, there is a gap 
higher than 22% between DPBMA and UMP, thanks to the 
multiplexing scheme. Figure 26 illustrates the comparison 
among the schemes in terms of average prediction error. The 
increasing trend for higher CARs is due to the higher presence 
of passive reservations: even if the predictor fails to chose the 
right cell, there will be a lower chance to find available 
bandwidth, due to the higher presence of passive reservations. 
It can be seen that the ALeZi scheme offers the higher value 
(no passive reservations are made). In this case, DPBMA 
outperforms UMP and ALeZi for all the cases (1, 2 or 3 
predicted next cells). 

  

 

 

 

 

 

Fig. 26.Comparison among DPBMA, UMP and ALeZi in terms of 
average prediction error. 

In fig. 27, the schemes are compared in terms of CBP: first 
of all, it can be observed that the ALeZi prediction algorithm 
cannot guarantee service continuity since it is able to predict a 
next cell step-by-step, while the others can make a totally in-
advance prediction of all the future cells that will be visited.  

 

 

 

 

 

 

Fig.  27.Comparison among DPBMA, UMP and ALeZi in terms of CBP.  

It is clear that the considered Active Lempel-Ziv scheme 
offers a low CBP, since the call admission control is made 
only on two cells. This time the performance of DPBMA and 
UMP are comparable, with an average gap of about 0.04. 
Figure 28 illustrates the obtained results in terms of CDP.  
Also in this case, ALeZi is unsuitable, because it presents too 
high values for QoS and service continuity purposes. The 
probability of finding available resources for each hand-over 
is very low, so the calls are often dropped, especially for high 
CARs. The performance of UMP and DPBMA are never 
comparable. In general, DPBMA offers better results, with an 
average gain of about 10%. In the worst case (1 predicted next 
cell, high CAR) the CDP stays below 0.15. The final figure of 
the paper illustrates a graphical representation of the 
committed prediction error for each cell. Given that all the 
statistics average the results for the whole set of cells, the 
main aim of fig. 29 is to represent how the prediction error is 
distributed over the map. It is possible to see how the error 

percentages reflect the average values calculated in the 
previous statistics. 

 

  

 

 

 

 

 

Fig.  28.Comparison among DPBMA, UMP and ALeZi in terms of CDP. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.  29.Graphical representation of the way the prediction error is 
distributed among the system cells. 

 
On the upper right corner the error is higher than the one of 

the other places because the set of cells c13,c17,c18,c21,c22 cover 
a bigger urban area, so the probability of taking different roads 
is higher. In the other cases, the error stays under 16% or 22%. 

V. CONCLUSIONS 

This work proposes a new distributed Markovian 
prediction scheme for wireless cellular networks with 
vehicular mobility, integrating the passive reservation and 
multiplexing policies. It is also based on a road discretization 
algorithm, guaranteeing service continuity in QoS networks, 
without disrupting system utilization performance. The idea is 
independent from the considered coverage technology 
(UMTS, WLAN, GSM), as well as from the mobility model 
and it is of general application. The strength of the proposed 
distributed idea resides in the integration of the Markov 
predictor and the time multiplexing scheme, leading to 
DPBMA, which offers very good performance in terms of 
prediction error, utilization, CBP and CDP. The proposed 
integrated idea was compared with two existing works and it 
has shown better results, especially in terms of system 
utilization and CDP. In particular, after many considerations 
regarding performance and complexity, we highlighted that 
that a compression factor of 0.4 can reduce the number of 
computations of the Markov model, ensuring good 
performance results. 
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