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Abstract— The employment of an appropriate Bandwidth 

Management Scheme (BMS) is needed in wireless networking, 

given that the main desire of end-users is to take advantage of 

satisfactory services, in terms of Quality of Service (QoS), 

especially when a particular charge is paid to meet the 

requirement. In this paper we are interested in investigating how 

the continuity of services can be guaranteed in QoS networks, 

when users move from a cell to another one, under an 

infrastructure cellular coverage. The only way to face this issue is 

represented by the employment of in-advance bandwidth 

reservations, although it leads the system to waste bandwidth 

resources, since they are not used until the mobile host enters the 

coverage cell where the passive request has been made. A new 

scheme for predicting user movements is proposed, taking the 

advantage of the dynamic programming approach, that is able to 

reduce the number of possible roads to be considered and 

thereby increasing/decreasing the accuracy/redundancy of the 

proposed model. Several simulation runs have been carried out 

in order to assess the effectiveness of the proposed idea. 

Keywords- Mobility prediction, Pattern, Markov, Citymob,  

Passive, Resource, Reservation, Distributed, Bandwidth, Hand-over 

management, Mobile host, Quality of Service, QoS, Optimization, 

Wireless Networks. 

I.  INTRODUCTION 

With the rapid growth of Internet of Things (IoT) and 

mobile communications, the need for QoS guarantees has 

become of primary importance, especially when hand-over 

events occur by Mobile Hosts (MHs) changing coverage areas 

during their active sessions; they may find scarce resource 

availability in new locations and the current active 

connections can be dropped. To the best of our knowledge, the 

only way to ensure QoS and service continuity to mobile users 

consists of making a bandwidth reservation over all the cells 

that a MH will visit during its active connection. There are 

many protocols able to ensure early reservations like Next 

Step In Signaling (NSIS) [1], Dynamic ReSerVation Protocol 

(DSRVP) [2] and Mobile ReSerVation Protocol (MRSVP) [3], 

but a prediction scheme is mandatory in order to know which 

coverage cells a user will probably visit during its Call Life 

Time (CLT). On the basis of previous works [4], [5], we 

considered the MRSVP, which gives the possibility to 

exchange the right communication messages among the 

predicted coverage cells, achieving the needed passive amount 

of bandwidth in the cells where the MH will probably hand-in. 

The same Markov model has been considered, but an 

optimization on the number of chain states is now proposed: in 

the previous contributions, only one hand-over direction has 

been considered for the hand-off event toward a next cell, 

without considering the roads topology that characterize MH 

movements. Given that the number of chain states could be 

very large if all the roads that lead to another cell are 

considered, an optimization scheme is proposed. In particular, 

the dynamic programming approach is considered [6], having 

the possibility to choose the right number of states for the 

Markov model, taking into account the morphology of the 

considered geographical region. An approximation has been 

introduced and the associated error has been minimized. 

Clearly, in order to implement and realize this kind of 

prediction, a real network operator has to analyse users’ 

mobility, through a statistical treatment. In our case, without 

access to real data about MH movements, we employed the 

Citymob for Roadmaps (C4R) mobility generator [7], in order 

to appreciate prediction performance when mobility traces are 

extracted from real roadmaps of different countries (the 

mobility model has a heavy impact on the obtained results, that 

may be unsuitable if the adopted mobility model is unrealistic). 

The integration between the Markov process and the dynamic 

programming approach leads to a new distributed prediction 

scheme, called Dynamic Markov Prediction Algorithm 

(DMPA), tested through extensive simulation studies. The rest 

of the paper is organized as follows: section II gives an 

overview of the existing related work, section III gives a 

detailed description of the proposed scheme, by considering the 

environment and the solution. Section IV shows our simulation 

results, then section V concludes the paper. 

II. LITERATURE OVERVIEW 

Mobility and resource management are critical for 

providing QoS guarantees in wireless networks, so it is very 

important to accurately describe mobility patterns of MHs in 

wireless cells, especially when a prediction approach is 

needed. In [8] the Mobility-Dependent Predictive Resource 

Reservation (MDPRR) scheme is proposed, that is able to 

provide flexible usage of limited resource in mobile 

multimedia wireless networks. Each cell is divided into non-
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hand-off, pre-hand-off and hand-off zones, so that bandwidth 

is reserved in the target/sub-target cell as mobile stations move 

into the pre-hand-off zone. An admission control scheme is 

also considered to further guarantee the QoS of real-time 

traffic as, for example, Voice over IP, as proposed in [9] and 

[10]. The Fixed Bandwidth Reservation (FBR) scheme [11] 

can improve the dropping probability of hand-off connections 

by reserving a fixed number of channels exclusively for hand-

off connections. The drawback of this scheme is that the 

reserved bandwidth is often wasted in the hot spot area. In 

[12] the authors optimize some system parameters in terms of 

Call Dropping Probabilities (CDPs) and Call Blocking 

Probabilities (CBPs) introducing a prediction algorithm based 

on data mining approaches, in order to implement a distributed 

Call Admission Control (CAC) scheme, considering also the 

throttle flag as indication of the usage of each cell. Through 

estimation of MHs trajectory and arrival/departure times in 

[13], a group of future cells is determined: it constitutes the 

most likely cluster into which a terminal will move. Two 

passive reservation techniques are proposed in [14], exploiting 

Wiener prediction and time series theory, making in-advance 

reservations under non-Poisson and/or non stationary arrival 

processes, arbitrary distributed call and channel holding time 

and arbitrary per-call resource demands. In [15] the authors 

give a contribution in WLAN infrastructure planning, basing 

their decisions on mobility prediction: they propose a new 

method for feature extraction with a novel neural network 

classifier based on a hidden genetic algorithm, reaching an 

acceptable prediction accuracy. In previous works, like [16] 

and [17], a prediction technique based on the Cell Stay Time 

(CST) evaluation of a mobile user is proposed. A formula that 

relates cell coverage radius and speed is calculated and 

resource reservation techniques have been proposed, so it is 

possible to evaluate the number of coverage cells that users 

will visit during their CLT. To the best of our knowledge, all 

the literature is focused on the prediction of a single next cell, 

without the guarantee of service continuity during the whole 

flow lifetime. In addition, they do not take into account the 

geographical morphology of the considered region, in terms of 

roads, that heavily influences driving styles and mobility 

patterns in terms of cell sequences. In this work, instead, the 

DMPA algorithm is proposed: it provides a distributed set of 

Markovian predictors, each one optimized in terms of number 

of states and local road topology coverage. With respect to 

previous works [4], [5], [17], [18], DMPA optimizes the 

number of states for each chain, taking into account the 

particular roads structure. In this way, the number of states for 

each cell is variable and it strictly depends on the possible MH 

movements in the considered region. As mentioned before, the 

number of states of each chain is adequately chosen, 

minimizing the error committed during the approximation. 

Each Markovian chain is trained by taking into account local 

trajectories (belonging to the associated coverage cell); each 

predictor is specialized for the specific coverage area, with 

different traffic densities, in terms of roads, road populations, 

moving directions and so on; the considered signaling protocol 

has been integrated with Markov chains in order to realize a 

complete prediction scheme. Although the proposed idea is 

based on MRSVP and Markovian processes, it is suitable for 

any other signaling protocol and/or (un)conventional 

prediction approach. The effectiveness of DMPA has been 

also verified in terms of accuracy error, by considering 

different movement traces of MHs and the length of learning 

observations. 

III. PROBLEM STATEMENT, SYSTEM CHARACTERIZATION 

AND PROPOSED IDEA 

In this section, the proposed idea is completely described. 

It must be noted that the proposed idea does not depend on the 

employed protocol: for example, it can be one of those used or 

described in [1], [3]. As stated before, we chose the MRSVP 

[1], with which one reservation is made by a user on the 

current coverage cell (active reservation), while passive ones 

are made on the predicted remote cells. When hand-overs 

events have to be managed in an adequate manner, MRSVP 

can be employed, handling users mobility and offering 

guaranteed services, giving the chance to mobile users to 

make reservation requests over more than one cell, by their 

proxy agents. For more details about MRSVP to see [3]. In our 

work, we considered that a MRSVP session starts with the 

active service request performed by a MH u on its active cell 

ct; if there are no free channels in ct, the call is refused, else ct 

applies the results obtained in [3], [16] to evaluate the number 

of predicted hand-over events. If no hand-over events are 

predicted (the CST>>CLT), then the call is accepted (u will 

visit only the current cell ct). Otherwise the proposed DMPA 

is used to predict the neighbor cell nc∈Adj(ct), where Adj(ct) is 

the set of neighbors of cell ct∈C and ||Adj(ct)||=n, where n is 

the number of possible hand-over directions. We considered a 

generic Geographical Region GR covered by a number of cells 

equals to c. Let C be the set of coverage cells of the 

considered wireless network, C={c1,c2,…,cc} with ||C||=c. For 

each cell ct ∈ C, with a coverage radius rt, a set of neighboring 

cells Adj(ct) can be defined, on the basis of network topology 

and cell adjacencies. A circular coverage cell can be 

approached with a n-edge regular polygon and, considering 

n=6, coverage cells are represented by regular hexagonal 

areas, as approached in [18]. In addition, a set Sho of n 

movement directions d1...dn can be introduced, where 

dj=θ⋅(2⋅j-1)/2 rad., θ=2π/n rad. and j=1..n (it represents the j-

th side of the hexagon), so Sho={d1,...,dn}, ||Sho||=n. In this 

work ||Adj(ct)||=||Sho||=6, ∀ ct ∈ C.  

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Hexagonal approximation (n=6) and GR coverage. 
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Differently from [18], we will show how considering only 

n=6 (without further considering additional angles), the model 

suffers a certain error in prediction making, so more 

granularity is required, without exceeding in computational 

complexity, in order to adapt the local approximation model to 

the morphology of the covered territory. Let GRx·GRy be the 

area of the considered region GR; without loss of generality, 

let us assume that rt=R ∀ ct ∈ C so, referring to fig. 1, note 

how each circular region of radius R, can be approximated by 

an hexagon, with an apothem r equals to R·(√3/2) and l=R. So, 

given the area to be covered as GRx·GRy and hypothesizing 

that R<<GRx, R<<GRy a lower bound for c, clow, is given by: 

 

               (1) 

 

because the total area is divided by the area of a single 

hexagonal coverage cell. The expression of clow represents a 

lower bound because the shape of each cell cannot fit exactly 

the considered area, as shown in fig. 1, so additional cells are 

needed. In particular, referring to fig. 1 and respecting the 

considered geometry, an upper bound for the number of 

needed cells can be assumed to be chigh=kx·ky, where: 
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Evaluating the expressions for kx and ky and rounding to the 

next integer value, we obtain that: 
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The same treatment can also be made for a circular 

geographical region GR with a shape of radius GRR. The 

expression of clow becomes: 
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while for chigh the expression becomes: 
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as concluded in [17], [18], where kR is defined as: 
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In previous works [4], [5], [17], [18] we did not 

differentiate the model for different road densities. In 

particular, referring to fig. 2, we can observe how a cell ct ∈ 

C, based on the value of rt, can manage a different number of 

roads. Let us consider two cells c1, c2 ∈ C, which cover real 

geographical areas (two locations of a city in south Italy are 

considered). We can immediately observe how the number of 

possible hand-over roads for c2 (three sides on a total of six 

have only one possible direction for hand-over) is less than the 

one for c1 (the crosses on the hexagonal sides represent some 

of the possible hand-in/hand-out points, i.e. intersections 

among roads and cell sides).  

 

 

 

 

 

 

 

 

 

Figure 2. Different road densities for different coverage cells c1 and c2.  
 

The main idea is to extend the number of states of the 

model in order to take into account all the possible crossing 

directions; on the other side, the complexity of the proposed 

model cannot be increased indefinitely, so a right trade-off 

should be found, aggregating, when possible, roads 

information belonging to users mobility. At this aim, we 

considered the approach of [6], in which an input sequence of 

a certain size has been divided into a lower number of sub-

sequences, each one represented by the average value; the 

obtained partitioning minimizes the error due the 

approximation process. Let us hypothesize that each coverage 

node (Access Point, Base Station, etc.) is able to recognize the 

direction on which a MH enters or leaves the cell (many 

Direction-of-Arrival (DoA) algorithms are present in the 

literature, depending on the adopted technology). So, referring 

to a generic coverage cell ct ∈ C, for each dj∈ Sho we can 

define a set of roads RDdj = {rddj1, rddj2, …, rddjJ} where rddjk ∈ 

[0,2π], k=1,…,djJ.  

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Cell directions subdivision and intersection degrees 

determination. 

From fig. 3 it can be seen how, for n=6, for each dj∈ Sho 

which represents the “average” direction associated to side j, 

the lower and upper bounds can be determined as [dj-π/6, 

dj+π/6), so each rddjk ∈ RDdj belongs to that interval. Figure 3 

shows, on the right, how the angles of road intersections can 

be determined. Given the sequence of roads/angles RDdj = 

{rddj1, rddj2, …, rddjJ}, with ||RDdj||=J and a compression factor 
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λ (with λ<J), the set RDdj has to be divided into λ sub-

sequences and each of them has to be replaced with its average 

value. We followed the approach of [6], which is able to solve 

a subclass of the run-length coding scheme in polynomial 

time, using a dynamic programming approach. In particular, 

each rddjk ∈ RDdj is associated to the terminal nodes of the 

base level of a Compact Binary Tree (CBT), composed by 2∙J-

1 nodes, assuming that J=2
l
J. The CBT is represented by an 

array of the form Tdj=[t1, t2, …, t2J-1], where each element is 

associated to a node: the last J elements store the values of 

RDdj, while each tk, with k<J, has two children t2k and t2k+1 and 

2
hk descendents, with hk=lJ -  log2k , which represents a 

subsequence Sk of the input sequence: 

     .   (8) 

In addition tk=(t2k + t2k+1)/2=µk. Considering c1 and c2 and 

directions d1 and d6 respectively, fig. 4 shows the CBTs. 

 

 

 

 

 

 

 

 

 
Figure 4. CBTs for two different directions. 

 

The related arrays are: RDd1={rdd11, rdd12}={0.1285, 

0.8213}, Td1=[0.4749, 0.1285, 0.8213], RDd6={rdd61, rdd62, 

rdd63, rdd64, rdd65, rdd66}={1.5012, 1.6081, 1.712, 1.8373}, 

Td6=[1.664651, 1.55465, 1.77465, 1.5012, 1.6081, 1.712, 

1.8373]. With the approach of [24], the problem is solved by 

minimizing the quantity ERR(k,λ), representing the error of 

compressing the roads subsequence Sk using λ values:  

 

 

               (9) 

 

 

where εk is the mean square error committed with the 

compression of the roads subsequence Sk with a single value: 

 

             (10) 

 

For more details about dynamic programming and run-

length coding approach, please refer to [6].  

At this point, for each cell ct ∈ C, an array Λt=[λt
1,… λt

n] 

(with n=6 in our case) can be defined, where each λt
j indicates 

the best compression factor for cell ct associated to RDdj on 

direction dj∈ Sho and 1≤λt
j ≤||RDdj||. For each λt

j, a partition 

vector Μt
j = [µt

j1, …, µt
jλj] represents the compressed 

sequence, for the j-th side of cell ct; each element µt
jk has an 

associated partition range p
t
µjk, belonging to the j-th Partition 

Set PS
t
j, defined as: 
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In DMPA, a Finite State Markov Chain is considered: the 

set of states is not only related to the number of possible hand-

over directions, but it considers also the number of roads of 

the covered region. Given vectors M
t
 and PS

t
, defined in 

previous section, with ||PS
t
||=||M

t
||=n, the idea is to associate 

one state of the Markovian model to each partition subset, 

representing a compressed set of roads, for each side of ct. A 

Markov chain (fig. 5) can be associated to a cell ct: 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. An example of Markovian cell modeling. 

A road rddjq , that intercepts cell ct on side j, is said to 

belong to state sjk if: 

             (12) 

In this paper we are not focusing on the definition of a 

Markovian model, we want to optimize, instead, the number 

of states of the model. So, without entering in the particulars 

of the Markovian theory, we can write that the DMPA Markov 

Chain, related to the t-th (indicated with DMC
t
), can be 

described by three terms:  Πt
, σt

 and ST
t
. For the details about 

the introduced triplet and their evaluation, please refer to [5]. 

Figure 6 illustrates how a distributed set of MCs MC={MC
t
, 

1≤t≤c} can be used to model the whole cellular system. In 

order to be admitted into the system, each mobile host makes a 

reservation request to the current coverage cell (active 

reservation) and to the predicted ones (passive reservations). 

This is made by employing the native signaling packets of the 

MRSVP. If at least one cell sends a negative answer (no 

available bandwidth), the call is refused, then the MH will try 

again later. In the next section, more details about our 

simulation setups and results will be given. 
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Fig. 6. An example of wireless cellular system modeled through MCs.  
 

 

IV. PERFORMANCE EVALUATION 

In order to evaluate the proposed integration in terms of 
average prediction error, Call Dropping Probability (CDP) and 
Call Blocking Probability (CBP), we considered real mobile 
environments: Citymob mobility generator [7] and the C4R 
GUI have been considered, because they give the opportunity 
of obtaining mobility traces from real maps. In particular, we 
used maps of some European cities (about 1 km

2 
for each 

scenario), over which a set of coverage cells (all with the same 

coverage radius R) has been considered (rt=R, ∀ ct ∈ C) and R 

∈ [50, 250] meters. Square maps have been considered and fig. 
7 shows the obtained values of upper and lower bounds (eq. 1 
and eq. 4), independently on the considered road topology. 

 

  

 

 

 

 

 

 

 

Fig. 7. Number of necessary cells for different coverage radius. 

It is shown that, when the coverage is set-up, the effective 

number of employed cells always respects the obtained bounds. 

As stated before, different cities have been considered and, for 

all of them, obtained results are comparable: without loss of 

generality, we show the obtained curves for the city of London; 

fig. 8 illustrates the obtained coverage for R=110m and 

GRx=GRy≅1000m; in this case clow=31, chigh=54 and c=42. 

Once the topology of GR has been determined, as well as the 

coverage map, the compression algorithm needs to be executed 

for all cells. In order to choose the right number of partitions 

for each ct and direction, a compression factor cft is chosen, so: 

              

             (13) 

 

where the [ .] operator indicates the integer part. 

For each cell ct, a total of twenty slots (ns
t
 = 20) has been 

considered and each reservation occupies a single slot in each 
cell (active or passive). Only for example, Table I resumes the 

values of ||RDdj|| and λt
j for three cells (c10, c18, c33) as 

illustrated in fig. 9, while table II indicates the obtained ΛΛΛΛt sets 
for different values of cft. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The set of 42 cells used to cover the considered region.  

 

 

Fig. 9. Road sets for some cells of the considered network. 

In order to better understand how the different road sets are 
partitioned, cell c10 has been considered graphically, fig. 10, for 
different compression factor values (0.2, 0.4, 0.6 and 0.8). 

TABLE I. NUMBER OF ROADS FOR EACH DIRECTION FOR CELLS 

C10, C18 AND C33. 

 

 

 

TABLE II. THE NUMBER OF COMPRESSED ROADS SET FOR THE 

CONSIDERED CELLS. 

 

 

ct d 1 d 2 d 3 d 4 d 5 d 6

10 4 4 2 3 3 3 ||RD dj || 10

18 2 1 3 0 1 2 ||RD dj || 18

33 1 2 1 1 3 2 ||RD dj || 33

 



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1

2

0
]||||)1([log2 tdjt RDcft

jλ

if ||RDdj||=0 

if ||RDdj||≠0 and (1-cft)∙|| RDdj ||t >1 

else 

ct cf t =0,2 cf t =0,4 cf t =0,6 cf t =0,8

10 {4,4,2,2,2,2} {2,2,2,2,2,2} {2,2,1,2,2,2} {1,1,1,1,1,1} ΛΛΛΛ 10101010

18 {2,1,2,0,1,2} {2,1,2,0,1,2} {1,1,2,0,1,1} {1,1,1,0,1,1} ΛΛΛΛ 18181818

33 {1,2,1,1,2,2} {1,2,1,1,2,2} {1,1,1,1,2,1} {1,1,1,1,1,1} ΛΛΛΛ 33333333
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First of all, a training campaign was performed in order to 
obtain the elements of DMC

t
 and ST

t
, in function of the 

considered map, with c=42. The Kraub mobility model has 
been considered [7] (with Acceleration = 1.4m/s

2
, Deceleration 

2m/s
2
, si=0.5 and τ=0.2s) for 1000 simulations with 2000s of 

duration and 270 vehicles for each run (low dense roads have 
been considered for this simulation campaign). Mobility log 
files have been obtained and, then, the coverage set of cells has 
been considered. Different compression factor cf

t
 values have 

been used, as well as different coverage radius values R. We 
assume that each cell is able to recognize the possible roads 
with DoA or Angle-of-Arrival (AoA) approaches.  

 

 

 

 

 

 

 

Fig. 10. Average system utilization for different values of R and 

compression factor cf.  

Fig. 10 shows how the system responds to DMPA in terms 
of system utilization, calculated as the average of the ratio 
between the active bandwidth slots and the total ones, for each 
cell. It is evident how, in general, the system is under-utilized 
(u% belongs to the range [25, 75]). There is an increasing trend 
for higher coverage radius: when the number of cells decreases 
from 42 to 10 (as illustrated in fig. 7), there is a lower number 
of passive reservations (lower cells have to be predicted 
because of the higher geographical covered region). In this 
case, also the protocol overhead decreases, because there is a 
lower number of cells among which the signaling packets have 
to be exchanged  

 

 

 

 

 

 

 

 

 

Fig. 11. Average prediction error for 2nd and 3rd hand-over events 
with different values of R and compression factor cf. 

. For the same reasons, u% increases when the algorithm 

employs a higher grade of roads compression: when cf →1, the 

number of partition sets for each side ||RDdj||→1, so only one 

possible direction needs to be considered for each side and the 
overhead is reduced. Figure 11 gives a description of the trend 
of the prediction error for the second (e2%) and third (e3%) hand-
over events, given that e1%=0. For a single simulation, it is 
evaluated as the ratio among the number of users that do not 
find a passive reservation after the hand-over event and the 
number of total 2

nd
 or 3

rd
 hand-over events during simulation 

time. The trend is increasing both for higher coverage radius 
(host movements are more casual if the considered area is 
larger) and cf values (system looses the granularity about users 
movements). The maximum obtained value is 25.3%. In Fig. 
12 the course of the CBP is illustrated. It is evident how for 
larger R it decreases, because each cell will cover a larger 
geographical area (so it will serve more users), while the 
number of available slots remains the same. In addition, for 
higher cf values, there is a slight decreasing of CBP because, 
for higher prediction values, the system overestimates the 
available resources and admits more users. 

 

 

 

 

 

 

 

 

 

Fig. 12. Trend of CBP vs R and cf. 

 

 

 

 

 

 

 

 

 

Fig. 13. Trend of CDP vs R and cf. 

Figure 13 shows the trend of the CDP for different values 
of R and cf. For small coverage areas there is a negligible 
probability of call dropping (below 5%) because of (based also 
on the trend of prediction error) more deterministic host 
movements in the network. In addition, a higher value of cf 
brings the prediction algorithm to lose more roads information 
granularity, arriving to the simplest case of one direction for 
each coverage side. 
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V. CONCLUSIONS 

This work proposes a new Markovian prediction model, 
DMPA, optimized in terms of number of states. The dynamic 
programming approach is employed to compute an adequate 
number of states, able to reflect roads topology properties and 
mobile hosts behavior. It is also able to guarantee service 
continuity in QoS networks, without disrupting system 
utilization performance. The main strength of DMPA resides in 
the integration of the Markov predictor and the time roads 
compression scheme, leading to very good performance in 
terms of prediction error, utilization, CBP and CDP. After 
many considerations regarding DMPA performance, we 
highlighted that that a compression factor of 0.4 can be enough 
to reduce the number of computations of the Markov model, 
ensuring a good trade-off in performance results. 
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